Christopher Robart leads Ambyint — a technology company creating the Nest thermostat for oil rigs — with his twin brother, Alex. Courtesy of Ambyint

Oil and gas startup exec positions Houston company for more growth in 2019

Featured Innovator

Most of Christopher Robart's 10-year career in oil and gas has been deliberate and calculated — researching the right startup to be involved in or finding the right buyer for a company he invested in. However, his actual start in the industry wasn't so intentional.

"I sort of fell into oil and gas after I got of college back in 2003," says Robart, who is the president of Ambyint USA. "Before that, I was involved in a few startup things — some digital and some not. I was always sort of an entrepreneur."

Robart shares the passion of entrepreneurialism with his twin brother, Alex, CEO of Ambyint. The two have similar work experiences, since they act as an oil and gas startup team in Houston. One of the first companies the duo bought and sold was PacWest Consulting Partners, which was sold to IHS Energy in 2014, Robart says. The second one, Digital H2O, they founded, grew the team, lead some investments, and sold it to Genscape in 2015.

The pair's newest endeavor is Ambyint, an oilfield smart technology company with Canadian origins. The Robart brothers have been involved in it for about two and a half years.

Christopher Robart spoke with InnovationMap about his career and what he hopes to accomplish with his oil and gas startup in 2019.

InnovationMap: How did you and your brother first get involved in Ambyint?

Christopher Robart: After we left IHS, we knew that our next up was going to be software and upstream oil and gas, but there were a lot of question marks. We did our due diligence. We leveraged all that information we found and settled on which market we wanted to be in. We ended up finding Ambyint and liked what they had built to date, but they had some gaps and shortcomings, particularly on the commercial side, and they had no U.S. presence. We thought those two gaps were something we'd be helpful filling out. We went through a fairly lengthy process to lead an investment into the company, and essentially took over through that process.

IM: So, Ambyint still has an office in Canada?

CR: The Canada office is primarily a technology office, with some sales capabilities up there. The U.S. is primarily sales, marketing, and customer support.

IM: How does the technology work?

CR: The easiest way to explain it is we're like a Nest thermostat for your oil wells. It's a piece of hardware and a piece of software. It's wired into the well's control system and tied up to cloud-based software. From there, we've been deploying artificial intelligence, machine learning, deep learning, etc.

IM: What do you look for in customers?

CR: Oil companies of any shape or size, really. Oil and gas industry aren't really known for being early adopters of technology. There's a lot of resistance to change, particularly at the production level, which we focus on. So we're looking for early adopters looking to lead the way.

We're in pretty much all the major oil-producing areas in the U.S. and Canada. We also have customers in Mexico, Chili, and Egypt. There's a few more countries in the Middle East we're trying to get into.

IM: Are you planning another fundraising round?

CR: We'll embark on a series B in the near future. We closed our series A, and it was pretty large, so we're in a good place. (The series closed in September of 2017 with $11.5 million raised, according to Crunchbase.)

IM: What are your goals for 2019?

CR: We've built a lot of cool technology, and we continue to do that. Our focus for 2019 is to continue to commercialize and expand our customer base. Our sales cycle is pretty long. It could be a year from the time we bring an initial lead to the table, running a pilot, getting results, and developing a plan. It's a long, slow, and, in some cases, a painful process.

When you're doing things like machine learning, you're teaching a machine how to do something a human would do something. What's required to do that is a massive amount of data to start, and from there, it's a never ending journey of data collection and monitoring your accuracy.

We've been focused on one specific artificial lift pump — every well will eventually take a piece of artificial lift pump. We work on the most common artificial lift pump, but it's just one of six key types. In addition to selling more of that pump, we are in the process of expanding to additional lift types.

IM: What keeps you up at night, as it pertains to your business?

CR: Change management. Getting our customers to adopt new technology and embrace change. That's it. We're constantly trying to get our customers to move more quickly.

IM: How do you and your brother work together? Do you each play different roles in the company?

CR: Our backgrounds are similar. We're twins, but we have personality differences. I spend a little more time with our customers than he does and with new product initiatives. I get pretty hands on.

His mandate is less focused on walking and talking with customers and more on managing the functions of the business and working with the leadership team. As well as financing and fundraising.

We've got a pretty good division of labor, but there is a lot of overlap of what we do.

IM: What are some of the pros and cons of being in Houston?

CR: Obviously the pro of being in Houston is it being the oil capital of the world. All our customers are here. It's sort of a must.

The downside of running a technology company in town is that tech talent is quite thin on the ground in Houston — especially what we're looking for. So, we don't have any tech team members in the Houston office. I'll put it mildly in that we are skeptical of the talent pool for really strong software developers in the Houston market.

------

Portions of this interview have been edited.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers develop material to boost AI speed and cut energy use

ai research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.

Houston to become 'global leader in brain health' and more innovation news

Top Topics

Editor's note: The most-read Houston innovation news this month is centered around brain health, from the launch of Project Metis to Rice''s new Amyloid Mechanism and Disease Center. Here are the five most popular InnovationMap stories from December 1-15, 2025:

1. Houston institutions launch Project Metis to position region as global leader in brain health

The Rice Brain Institute, UTMB's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department will lead Project Metis. Photo via Unsplash.

Leaders in Houston's health care and innovation sectors have joined the Center for Houston’s Future to launch an initiative that aims to make the Greater Houston Area "the global leader of brain health." The multi-year Project Metis, named after the Greek goddess of wisdom and deep thought, will be led by the newly formed Rice Brain Institute, The University of Texas Medical Branch's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department. The initiative comes on the heels of Texas voters overwhelmingly approving a ballot measure to launch the $3 billion, state-funded Dementia Prevention and Research Institute of Texas (DPRIT). Continue reading.

2.Rice University researchers unveil new model that could sharpen MRI scans

New findings from a team of Rice University researchers could enhance MRI clarity. Photo via Unsplash.

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI. In a study published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Continue reading.

3. Rice University launches new center to study roots of Alzheimer’s and Parkinson’s

The new Amyloid Mechanism and Disease Center will serve as the neuroscience branch of Rice’s Brain Institute. Photo via Unsplash.

Rice University has launched its new Amyloid Mechanism and Disease Center, which aims to uncover the molecular origins of Alzheimer’s, Parkinson’s and other amyloid-related diseases. The center will bring together Rice faculty in chemistry, biophysics, cell biology and biochemistry to study how protein aggregates called amyloids form, spread and harm brain cells. It will serve as the neuroscience branch of the Rice Brain Institute, which was also recently established. Continue reading.

4. Baylor center receives $10M NIH grant to continue rare disease research

BCM's Center for Precision Medicine Models has received funding that will allow it to study more complex diseases. Photo via Getty Images

Baylor College of Medicine’s Center for Precision Medicine Models has received a $10 million, five-year grant from the National Institutes of Health that will allow it to continue its work studying rare genetic diseases. The Center for Precision Medicine Models creates customized cell, fly and mouse models that mimic specific genetic variations found in patients, helping scientists to better understand how genetic changes cause disease and explore potential treatments. Continue reading.

5. Luxury transportation startup connects Houston with Austin and San Antonio

Shutto is a new option for Houston commuters. Photo courtesy of Shutto

Houston business and leisure travelers have a luxe new way to hop between Texas cities. Transportation startup Shutto has launched luxury van service connecting San Antonio, Austin, and Houston, offering travelers a comfortable alternative to flying or long-haul rideshare. Continue reading.

Texas falls to bottom of national list for AI-related job openings

jobs report

For all the hoopla over AI in the American workforce, Texas’ share of AI-related job openings falls short of every state except Pennsylvania and Florida.

A study by Unit4, a provider of cloud-based enterprise resource planning (ERP) software for businesses, puts Texas at No. 49 among the states with the highest share of AI-focused jobs. Just 9.39 percent of Texas job postings examined by Unit4 mentioned AI.

Behind Texas are No. 49 Pennsylvania (9.24 percent of jobs related to AI) and No. 50 Florida (9.04 percent). One spot ahead of Texas, at No. 47, is California (9.56 percent).

Unit4 notes that Texas’ and Florida’s low rankings show “AI hiring concentration isn’t necessarily tied to population size or GDP.”

“For years, California, Texas, and New York dominated tech hiring, but that’s changing fast. High living costs, remote work culture, and the democratization of AI tools mean smaller states can now compete,” Unit4 spokesperson Mark Baars said in a release.

The No. 1 state is Wyoming, where 20.38 percent of job openings were related to AI. The Cowboy State was followed by Vermont at No. 2 (20.34 percent) and Rhode Island at No. 3 (19.74 percent).

“A company in Wyoming can hire an AI engineer from anywhere, and startups in Vermont can build powerful AI systems without being based in Silicon Valley,” Baars added.

The study analyzed LinkedIn job postings across all 50 states to determine which ones were leading in AI employment. Unit4 came up with percentages by dividing the total number of job postings in a state by the total number of AI-related job postings.

Experts suggest that while states like Texas, California and Florida “have a vast number of total job postings, the sheer volume of non-AI jobs dilutes their AI concentration ratio,” according to Unit4. “Moreover, many major tech firms headquartered in California are outsourcing AI roles to smaller, more affordable markets, creating a redistribution of AI employment opportunities.”