Texas A&M's Dog Aging Project received NIH funding to expand a clinical trial studying how the drug rapamycin can extend the lives of companion dogs. Photo via Getty Images.

The Texas A&M College of Veterinary Medicine and Biomedical Sciences has received a $7 million grant from the National Institutes of Health to support its Dog Aging Project.

The DAP is a research project that was launched in 2019 by Texas A&M and the University of Washington School of Medicine and has enrolled over 50,000 dogs to date, according to a release. The program studies various breeds of companion dogs and studies the effects of aging to help develop a better understanding of what can lead to an expanded, healthy canine life, which can also assist with human aging knowledge.

The NIH funds will be used to expand a clinical trial studying how the drug rapamycin, also called sirolimus, can extend the lives of companion dogs.

The project, known as Test of Rapamycin In Aging Dogs (TRIAD), is the third DAP clinical trial involving the drug rapamycin. The drug has previously been used as an immunosuppressant during organ transplants in humans. Past DAP studies reported that the drug appears to improve cardiac function in dogs.

“Rapamycin works by modifying the cells’ energy balance and energy handling,” Dr. Kate Creevy, DAP chief veterinary officer and a professor in the VMBS’ Department of Small Animal Clinical Sciences, said in a news release. "It seems to mimic the effects that happen in people or animals who do intermittent fasting. There is a lot of interest in intermittent fasting as a technique that can improve health, particularly healthy aging, and some of the pharmaceutical effects of rapamycin make the same changes at the cellular level.”

So far, 170 dogs are in the trial at 20 sites, with the goal of expanding to 580 dogs enrolled in multiple cities across the country. Dogs must be over 7 years old and in good general health to participate. They should also weigh at least 44 pounds. Owners are required to bring their dogs to one of TRIAD’s participating clinical sites every six months for three years. The Texas clinical sites are in College Station and North Texas.

“Dogs experience many of the age-related cognitive, sensory, neuropathologic and mobility changes that are common in older humans,” Dr. May Reed, a geriatrician at the University of Washington School of Medicine and another primary investigator in the study, said in the release. “The possibility that rapamycin might delay any of the alterations that contribute to cognitive impairment and functional decline is very exciting and has huge translational potential.”

“We get to learn how to support both dog and human aging at the same time. Our research is also powered by owners’ commitments to the health of their dogs, and that’s what makes our work both possible and meaningful,” Creevy added. “We’re very grateful to them.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

United breaks ground on $177 million facility and opens tech center at IAH

off the ground

United Airlines announced new infrastructure investments at George Bush Intercontinental Airport as part of the company’s ongoing $3.5 billion investment into IAH.

United broke ground on a new $177 million Ground Service Equipment (GSE) Maintenance Facility this week that will open in 2027.

The 140,000-square-foot GSE facility will support over 1,800 ground service vehicles and with expansive repair space, shop space and storage capacity. The GSE facility will also be targeted for LEED Silver certification. United believes this will provide more resources to assist with charging batteries, fabricating metal and monitoring electronic controls with improved infrastructure and modern workspaces.

Additionally, the company opened its new $16 million Technical Operations Training Center.

The center will include specialized areas for United's growing fleet, and advanced simulation technology that includes scenario-based engine maintenance and inspection training. By 2032, the Training Center will accept delivery of new planes. This 91,000-square-foot facility will include sheet metal and composite training shops as well.

The Training Center will also house a $6.3 million Move Team Facility, which is designed to centralize United's Super Tug operations. United’s IAH Move Team manages over 15 Super Tugs across the airfield, which assist with moving hundreds of aircraft to support flight departures, remote parking areas, and Technical Operations Hangars.

The company says it plans to introduce more than 500 new aircraft into its fleet, and increase the total number of available seats per domestic departure by nearly 30%. United also hopes to reduce carbon emissions per seat and create more unionized jobs by 2026.

"With these new facilities, Ground Service Equipment Maintenance Facility and the Technical Operations Training Center, we are enhancing our ability to maintain a world-class fleet while empowering our employees with cutting-edge tools and training,” Phil Griffith, United's Vice President of Airport Operations, said in a news release. “This investment reflects our long-term vision for Houston as a critical hub for United's operations and our commitment to sustainability, efficiency, and growth."

UH study uncovers sustainable farming methods for hemp production

growth plan

A new University of Houston study of hemp microbes can potentially assist scientists in creating special mixtures of microbes to make hemp plants produce more CBD or have better-quality fibers.

The study, led by Abdul Latif Khan, an assistant professor of biotechnology at the Cullen College of Engineering Technology Division, was published in the journal Scientific Reports from the Nature Publishing Group. The team also included Venkatesh Balan, UH associate professor of biotechnology at the Cullen College of Engineering Technology Division; Aruna Weerasooriya, professor of medicinal plants at Prairie View A&M University; and Ram Ray, professor of agronomy at Prairie View A&M University.

The study examined microbiomes living in and around the roots (rhizosphere) and on the leaves (phyllosphere) of four types of hemp plants. The team at UH compared how these microorganisms differ between hemp grown for fiber and hemp grown for CBD production.

“In hemp, the microbiome is important in terms of optimizing the production of CBD and enhancing the quality of fiber,” Khan said in a news release. “This work explains how different genotypes of hemp harbor microbial communities to live inside and contribute to such processes. We showed how different types of hemp plants have their own special groups of tiny living microbes that help the plants grow and stay healthy.”

The study indicates that hemp cultivation can be improved by better understanding these distinct microbial communities, which impact growth, nutrient absorption, stress resilience, synthesis and more. This could help decrease the need for chemical inputs and allow growers to use more sustainable agricultural practices.

“Understanding these microorganisms can also lead to more sustainable farming methods, using nature to boost plant growth instead of relying heavily on chemicals,” Ahmad, the paper’s first author and doctoral student of Khan’s, said the news release.

Other findings in the study included higher fungal diversity in leaves and stems, higher bacterial diversity in roots and soil, and differing microbiome diversity. According to UH, CBD-rich varieties are currently in high demand for pharmaceutical products, and fiber-rich varieties are used in industrial applications like textiles.