Researchers from Rice University and the University of Texas have teamed up for semiconductor microsystem innovation. Photo via Getty Images

A team led by the University of Texas at Austin and partnered with Rice University was awarded $840 million to develop “the next generation of high-performing semiconductor microsystems" for the U.S. Department of Defense.

The Defense Advanced Research Projects Agency (DARPA) selected UT’s Texas Institute for Electronics (TIE) semiconductor consortium to establish a national open access R&D and prototyping fabrication facility.

The facility hopes to enable the DOD to create higher performance, lower power, lightweight, and compact defense systems. The technology could apply to radar, satellite imaging, unmanned aerial vehicles, or other systems, and ultimately will assist with national security and global military leadership. As a member of DARPA’s Next Generation Microelectronics Manufacturing (NGMM) team, Rice’s contributions are key.

Executive vice president for research Ramamoorthy Ramesh and the Rice researchers will focus on technologies for improving computing efficiency. In a Rice press release, Ramesh notes the need to enhance “energy-efficient computing” which highlights Rice’s qualifications to contribute to the solution.

New microsystem designs will be enabled by 3D heterogeneous integration (3DHI)semi, which is a semiconductor fabrication technology that integrates diverse materials and components into microsystems via precision assembly technologies.

Kepler Computing, is a member of the NGMM team and utilizes ferroelectrics to develop energy-efficient approaches in computer memory and logic, and was co-founded by Ramesh. Other Rice researchers include:

  • Lane Martin, director of the Rice Advanced Materials Institute
  • Ashok Veeraraghavan, chair of electrical and computer engineering
  • Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering and founding chair of the materials science and nanoengineering department
  • Kaiyuan Yang, associate professor of electrical and computer engineering
  • Guha Balakrishnan, assistant professor of electrical and computer engineering

“Given the rapid growth of machine learning AI applications, there is a pressing need to fundamentally rethink current computing methodologies to advance the next generation of microelectronics,” Ramesh says in a news release. ”Rice University boasts world-class researchers with exceptional expertise in computer and electrical engineering poised to bolster this critical federally funded initiative.”

Overall, the project represents a total investment of $1.4 billion. The $840 million award from DARPA is a return on the Texas Legislature’s $552 million investment in TIE. TIE has funded the update of two UT fabrication facilities.

“TIE is tapping into the semiconductor talent available in Texas and nationally to build an outstanding team of semiconductor technologists and executives that can create this national center of excellence in 3DHI microsystems,” S.V. Sreenivasan, TIE founder and chief technology officer and UT professor of mechanical engineering adds.

------

This article originally ran on EnergyCapital.

Seven student-founded startups pitched their business plans at an annual NASA event. Photo via NASA.gov

Student startups pitch out-of-this-world tech at Houston competition

space tank

Several groups of students from all over the United States tapped into technology developed by NASA to create business plans. The teams competed in Houston last week for thousands of dollars, and one team went home with the win.

NASA’s Minority University Research and Education Project, or MUREP, hosted its annual "Space Tank" pitch event, MUREP Innovation and Technology Tech Transfer Idea Competition, or MITTIC, last week at Space Center Houston. Seven teams from across the country — including three Texas teams — pitched business plans based on NASA-originated technology.

“Students and faculty members of MITTIC are notably engaging with our agency, but they are helping to fulfill our mission to make the earth a better, safer place creating products and services that will shape the future," says Donna Shafer, associate director at Johnson Space Center.

All seven teams — each led by a minority student — went home with at least $5,000 as a prize for making it to the finals, but one team from the University of Massachusetts at Boston took home first place and a $10,000 prize. The winning team is also invited to join Team Piezo Pace from the University of St. Thomas, Houston, in a visit to NASA’s Ames Research Center in Silicon Valley, California, for additional look in the innovation and entrepreneurial space.

The judges for the event included: Hope Shimabuku, director of the U.S. Patent and Trademark Office for the Texas Region; Megan Ortiz, project manager at NASA; Lawrence Cosby, vice president of IP strategy at JPMorgan Chase & Co; Terik Tidwell, director of inclusive innovation at VentureWell; Jorge Valdes, program advisor on STEM education and intellectual property at the United States Patent and Trademark Office; Walt Ugalde, economic development executive at NASA; and Laura Barron, autonomous systems technology deputy project manager at NASA.

The seven finalist teams — and the technology they are working on — are as follows:

  • Lone Star College - CyFair’s team Aquarius Solutions, which pitched its water purification product, ClearFlow, based off an ammonia removal system developed at NASA
  • Fayetteville State University in North Carolina’s ASAPA team pitched their Autonomous Solar Array Assembly drone technology that’s based on NASA’s Print-assisted Photovoltaic Assembly system for automated printing of solar panels.
  • University of Houston-Clear Lake’s team AstroNOTS has identified a technology to address the safety of wildfire rescue teams. The PyroCap is a emergence fire shelter based on NASA’s Lightweight Flexible Thermal Protection System.
  • Santa Monica College in California’s team, BREATHE, pitched a noninvasive technology to replace traditional mammograms. The device can analyze breath through a NASA-designed sensor.
  • University of Massachusetts-Boston’s winning team, LazerSense Solutions, is working on a technology for smoke and gas detection. The PartaSense device can detect everything from carbon monoxide to black mold. It’s based on NASA’s MPASS IP.
  • Hartnell College in California’s team PanterBotics is working on an zero-emission electric vehicle, the OmniZero, to address climate change. The technology, a modular robotic vehicle, originated at NASA.
  • University of Texas at Austin’s Longhorn Innovators, who pitched a thinking cap technology to increase and enhance focus. The wearable device is based on NASA technology ZONE, or Zeroing Out Negative Effects, an analysis from EEG sensors.

The Center for Houston's Future is a part of a collaboration that has established a hub for hydrogen innovation. Image via Getty Images

Houston organization leads collaboration to advance Gulf Coast clean hydrogen projects

H-town

A handful of organizations have joined forces to create a new hub for the advancement of clean hydrogen projects in Texas, Southwest Louisiana, and the surrounding Gulf Coast region.

The HyVelocity Hub announced last week that it is applying for U.S. Department of Energy Regional Clean Hydrogen Hub funding. GTI Energy, The Center for Houston’s Future, The University of Texas at Austin, Air Liquide, and Chevron are among the founding members of the HyVelocity Hub.

“The name ‘HyVelocity’ conveys the idea that we have a tremendous opportunity to accelerate the creation of a clean hydrogen market at the pace needed to meet aggressive decarbonization goals for communities in our nation and around the globe,” says Paula A. Gant, president and CEO of Illinois GTI Energy, in a news release. “We need hydrogen deployment at scale, and this hub will lay the foundation with complete end-to-end demonstrations of an integrated network, match supply and demand regionally or locally, and leverage existing infrastructure to deliver resilient, reliable, and sustainable clean energy.”

The Gulf Coast is already a leader in hydrogen production, per the release, and the region is home to a diverse array of energy resources, including hydrogen production facilities and pipelines, a large base of industrial energy consumers, and a skilled, technical workforce.

“We are pleased to be partnering with our colleagues at GTI Energy in creating HyVelocity Hub as the implementation platform for the shared vision of a Texas-sized global clean hydrogen ecosystem created by our collaborative stakeholder process," says Brett Perlman, CEO of The Center for Houston’s Future in the release. “The realization of this vision will be achieved faster with clean hydrogen hub funding under the Bipartisan Infrastructure Law.”

Earlier this year, the Center for Houston's Future released a report that outlined what it will take for Houston to establish itself as a hub for hydrogen innovation as well as the impact this industry can have on Houston's economy. The HyVelocity Hub will engage environmental and social justice organizations in the Gulf Coast region to grow the local economy and create jobs in disadvantaged communities, according to the release.

“Accelerating clean energy technologies is vital to addressing global climate challenges as well as local air quality, and Port Houston is excited to participate in advancing these efforts with the HyVelocity Hub,” says Rich Byrnes, chief infrastructure officer of Port Houston, in the release. “The Hub will benefit trucking and maritime sectors, and our communities tremendously with cleaner transportation, lower emissions, new jobs, and both social and environmental equity."

The Rice Business Plan Competition is back in person this year, and these are the 42 teams that will go head to head for investments and prizes. Photo courtesy of Rice University

Rice University's student startup competition names 42 teams to compete for over $1 million in prizes

ready to pitch

The Rice Alliance for Technology and Entrepreneurship and the Jones Graduate School of Business have announced the 42 student teams that will compete in the 2022 Rice Business Plan Competition, which returns to an in-person format on the Rice University campus in April.

Of the teams competing for more than $1 million in prizes and funding in this year's competition, six hail from Texas — two teams each from Rice University, University of Texas at Austin, and Texas A&M University. The student competitors represent 31 universities — including three from European universities. The 42 teams were narrowed down from over 400 applicants and divided into five categories: energy, cleantech and sustainability; life sciences and health care solutions; consumer products and services; hard tech; and digital enterprise.

This is the first in-person RBPC since 2019, and the university is ready to bring together the entrepreneurs and a community of over 250 judges, mentors, and investors to the competition.

“As we come out on the other side of a long and challenging two years, we're feeling a sense of renewal and energy as we look to the future and finding inspiration from the next generation of entrepreneurs who are building a better world,” says Catherine Santamaria, director of the RBPC, in a news release.

“This year's competition celebrates student founders with a strong sense of determination — founders who are ready to adapt, build and grow companies that can change the future,” she continues. “We hope their participation will provide guidance and inspiration for our community.”

According to a news release, this year's RBPC Qualifier Competition, which narrowed down Rice's student teams that will compete in the official competition, saw the largest number of applicants, judges, and participants in the competition’s history. The Rice Alliance awarded a total of $5,000 in cash prizes to the top three teams from the internal qualifier: EpiFresh, Green Room and Anvil Diagnostics. From those three, Rice teams EpiFresh and Green Room received invitations to compete in the 2022 RBPC..

The full list of student teams that will be competing April 7 to 9 this year include:

  • Acorn Genetics from Northwestern University
  • Advanced Optronics from Carnegie Mellon University
  • Aethero Space from University of Missouri
  • AImirr from University of Chicago
  • AiroSolve from UCLA
  • Algeon Materials from UC San Diego
  • Anise Health from Harvard University
  • Beyond Silicon from Arizona State University
  • Bold Move Beverages from University of Texas at Austin
  • Diamante from University of Verona
  • EarthEn from Arizona State University
  • Empower Sleep from University of Pennsylvania
  • EpiFresh from Rice University
  • EpiSLS from University of Michigan
  • Green Room from Rice University
  • Horizon Health Solutions from University of Arkansas
  • Hoth Intelligence from Thomas Jefferson University
  • INIA Biosciences from Boston University
  • Invictus BCI from MIT
  • Invitris from Technical University of Munich (TUM)
  • KLAW Industries from Binghamton University
  • LIDROTEC from RWTH Aachen
  • Locus Lock from University of Texas at Austin
  • LymphaSense from Johns Hopkins University
  • Mallard Bay Outdoors from Louisiana State University
  • Mantel from MIT
  • Olera from Texas A&M University
  • OpenCell AI from Weill Cornell Medicine
  • OraFay from UCLA
  • Pareto from Stanford University
  • Photonect Interconnect Solutions from University of Rochester
  • PLAKK from McGill University
  • PneuTech from Johns Hopkins University
  • Rola from UC San Diego
  • RotorX from Georgia Tech
  • SimulatED from Carnegie Mellon University
  • SuChef from University of Pennsylvania
  • Symetric Finance from Fairfield University
  • Teale from Texas A&M University
  • Team Real Talk from University at Buffalo
  • TransCrypts from Harvard University
  • Woobie from Brigham Young University
Last year's awards had 54 student teams competing virtually, with over $1.4 million in cash and prizes awarded. Throughout RBPC's history, competitors have gone onto raise more than $3.57 billion in capital and more than 259 RBPC alumni have successfully launched their ventures. Forty RBPC startups that have had successful exits through acquisitions or trading on a public market, per the news release.
The new endowment will be available beginning in fall 2020. University of Texas at Austin/Facebook

University of Texas at Austin to provide free tuition to families making less than $65,000

higher ed

The University of Texas at Austin is taking a big step to combat the increasing costs of higher education. On July 9, the system's Board of Regents voted to establish a $160 million endowment to help Texas families ease the burden of funding a UT education.

Beginning in fall 2020, the endowment will cover in-state tuition and fees for students from families that earn up to $65,000 a year, or about 8,600 undergraduates a year. (Texas' median income was $59,206 in 2017, according to the most recent available numbers.)

Under the current Texas Advance Commitment, full tuition is only provided to families earning up to $30,000 per year.

Along with covering costs for families making $65,000 or less, the new endowment will provide "tuition support" for families making $125,000 or less, or about 5,700 students.

The $160 million endowment is a distribution of the state's Permanent University Fund, which "includes money from oil and gas royalties earned on state-owned land in West Texas," according to a release.

"There is no greater engine of social and economic mobility than a college degree, and this initiative ensures that more Texans will benefit from a high-quality UT Austin education," said Chancellor James B. Milliken, in a release.

The decision is undoubtedly a banner one for UT President Gregory Fenves, who has spent the majority of his tenure working on affordability issues. In a release, Fenves echoed Milliken, calling the fund an "invest[ment] in the future of our great state."

"I am grateful to the UT System Board of Regents and Chairman Kevin Eltife for prioritizing students and investing in the future of our great state," said Fenves. "This new endowment will go a long way toward making our university affordable for talented Texas students from every background and region."

------

This story originally appeared on CultureMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Micro-nuclear reactor to launch at Texas A&M innovation campus in 2026

nuclear pilot

The Texas A&M University System and Last Energy plan to launch a micro-nuclear reactor pilot project next summer at the Texas A&M-RELLIS technology and innovation campus in Bryan.

Washington, D.C.-based Last Energy will build a 5-megawatt reactor that’s a scaled-down version of its 20-megawatt reactor. The micro-reactor initially will aim to demonstrate safety and stability, and test the ability to generate electricity for the grid.

The U.S. Department of Energy (DOE) fast-tracked the project under its New Reactor Pilot Program. The project will mark Last Energy’s first installation of a nuclear reactor in the U.S.

Private funds are paying for the project, which Robert Albritton, chairman of the Texas A&M system’s board of regents, said is “an example of what’s possible when we try to meet the needs of the state and tap into the latest technologies.”

Glenn Hegar, chancellor of the Texas A&M system, said the 5-megawatt reactor is the kind of project the system had in mind when it built the 2,400-acre Texas A&M-RELLIS campus.

The project is “bold, it’s forward-looking, and it brings together private innovation and public research to solve today’s energy challenges,” Hegar said.

As it gears up to build the reactor, Last Energy has secured a land lease at Texas A&M-RELLIS, obtained uranium fuel, and signed an agreement with DOE. Founder and CEO Bret Kugelmass said the project will usher in “the next atomic era.”

In February, John Sharp, chancellor of Texas A&M’s flagship campus, said the university had offered land at Texas A&M-RELLIS to four companies to build small modular nuclear reactors. Power generated by reactors at Texas A&M-RELLIS may someday be supplied to the Electric Reliability Council of Texas (ERCOT) grid.

Also in February, Last Energy announced plans to develop 30 micro-nuclear reactors at a 200-acre site about halfway between Lubbock and Fort Worth.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Houston falls from top 50 in global ranking of 'World's Best Cities'

Rankings & Reports

Houston is no longer one of the top 50 best cities in the world, according to a prestigious annual report by Canada-based real estate and tourism marketing firm Resonance Consultancy.

The newest "World's Best Cities" list dropped Houston from No. 40 last year to No. 58 for 2026.

The experts at Resonance Consultancy annually compare the world's top 100 cities with metropolitan populations of at least 1 million residents or more based on the relative qualities of livability, "lovability," and prosperity. The firm additionally collaborated with AI software company AlphaGeo to determine each city's "exposure to risk, adaptation capacity," and resilience to change.

The No. 1 best city in the world is London, with New York (No. 2), Paris (No. 3), Tokyo (No. 4), and Madrid (No. 5) rounding out the top five in 2026.

Houston at least didn't rank as poorly as it did in 2023, when the city surprisingly plummeted as the 66th best city in the world. In 2022, Houston ranked 42nd on the list.

Despite dropping 18 places, Resonance Consultancy maintains that Houston "keeps defying gravity" and is a "coveted hometown for the best and brightest on earth."

The report cited the Houston metro's ever-growing population, its relatively low median home values ($265,000 in 2024), and its expanding job market as top reasons for why the city shouldn't be overlooked.

"Chevron’s shift of its headquarters from California to Houston, backed by $100 million in renovations, crowns relocations drawn by record 2024 Port Houston throughput of more than four million containers and a projected 71,000 new jobs in 2025," the report said.

The report also draws attention to the city's diversity, spanning from the upcoming grand opening of the long-awaited Ismaili Center, to the transformation of several industrial buildings near Memorial City Mall into a mixed-use development called Greenside.

"West Houston’s Greenside will convert 35,000 square feet of warehouses into a retail, restaurant and community hub around a one-acre park by 2026, while America’s inaugural Ismaili Center remains on schedule for later this year," the report said. "The gathering place for the community and home for programs promoting understanding of Islam and the Ismaili community is another cultural jewel for the country’s most proudly diverse major city."

In Resonance Consultancy's separate list ranking "America's Best Cities," Houston fell out of the top 10 and currently ranks as the 13th best U.S. city.

Elsewhere in Texas, Austin and Dallas also saw major declines in their standings for 2026. Austin plummeted from No. 53 last year to No. 87 for 2026, and Dallas fell from No. 53 to No. 78.

"In this decade of rapid transformation, the world’s cities are confronting challenges head‑on, from climate resilience and aging infrastructure to equitable growth," the report said. "The pandemic, long forgotten but still a sage oracle, exposed foundational weaknesses – from health‑care capacity to housing affordability. Yet, true to their dynamic nature, the leading cities are not merely recovering, but setting the pace, defining new paradigms of innovation, sustainability and everyday livability."

---

This article originally appeared on CultureMap.com.

Waymo self-driving robotaxis will launch in Houston in 2026

Coming Soon

Houston just cleared a major lane to the future. Waymo has announced the official launch of its self-driving robotaxi service in the Bayou City, beginning with employee-only operations this fall ahead of a public launch in early 2026.

The full rollout will include three Texas cities, Houston, Dallas, and San Antonio, along with Miami and Orlando, Florida. Currently, the company operates in the San Francisco Bay Area, Phoenix, and Los Angeles, with service available in Austin and Atlanta through Uber.

Before letting its technology loose on a city, Waymo first tests the routes with human drivers. Once each locale is mapped, the cars can begin driving independently. Unique situations are flagged by specialists, and engineers evaluate performance in virtual replicas of each city.

“Waymo’s quickly entering a number of new cities in the U.S. and around the world, and our approach to every new city is consistent,” explained the announcement. “We compare our driving performance against a proven baseline to validate the performance of the Waymo Driver and identify any unique local characteristics.”

The launch puts Waymo ahead of Tesla. Elon Musk’s Austin-based carmaker has made a lot of hullabaloo about autonomy being the future of the company, but has yet to launch its service on a wide scale.

Waymo started testing San Antonio’s roadways in May as part of a multi-city “road trip,” which also included Houston. The company says its measured approach to launches helps alleviate local concern over safety and other issues.

“The future of transportation is accelerating, and we are driving it forward with a commitment to quality and safety,” Waymo wrote. “Our rigorous process of continuous iteration, validation, and local engagement ensures that we put communities first as we expand.”

---

This article originally appeared on CultureMap.com.