Here's what student teams from around the world were invited to compete in the Rice Business Plan Competition. Photo via rice.edu

Rice Alliance for Technology and Entrepreneurship has named the 42 student startup teams that were extended invitations to compete in the 23rd annual Rice Business Plan Competition

The 2023 startup competition will take place on Rice University campus May 11 to 13, and the teams representing 37 universities from six countries will pitch to investors, mentors, and other industry leaders for the chance to win funding and prizes. Last year's RBPC doled out nearly $2 million in investment prizes.

This year, Rice saw its largest number of student startups applying for the RBPC internal qualifier from within campus. The university selected three to move on to compete at RBPC in May — Sygne Solutions, Neurnano Therapeutics, and Tierra Climate, which also received a total of $5,000 in cash prizes to these top three teams.

The 2023 RBPC will focus on five categories: energy, cleantech and sustainability; life science and health care solutions; consumer products and services; hard tech; and digital enterprise.

This invited companies, if they attend, will join the ranks of the 784 teams that previously competed in RBPC and have raised more than $4.6 billion in capital, as well as seen more than 50 successful exits including five IPOs.

The 2023 Rice Business Plan Competition invitees, according to Rice University's news release:

  • Active Surfaces, Massachusetts Institute of Technology
  • Adrigo Insights, Saint Mary’s University (Canada)
  • AirSeal, Washington University in St. Louis
  • Algbio, Yeditepe University (Turkey)
  • Arch Pet Food, University of Chicago
  • Astria Biosciences, University of Pittsburgh
  • Atma Leather, Yale University
  • Atop, UCLA
  • Biome Future, University of Florida
  • BioSens8, Boston University
  • BlueVerse, Texas Tech University
  • Boardible, Northwestern University
  • Boston Quantum, Massachusetts Institute of Technology
  • ceres plant protein cereal, Tulane University
  • Citrimer, University of Michigan
  • Dart Bioscience, University of Oxford (United Kingdom)
  • DetoXyFi, Harvard University
  • E-Sentience, Duke University
  • Edulis Therapeutics, Carnegie Mellon University
  • FluxWorks, Texas A&M University
  • Integrated Molecular Innovations, Michigan Technological University
  • Inzipio, RWTH Aachen University (Germany)
  • LoopX AI, University of Waterloo (Canada)
  • Magnify Biosciences, Carnegie Mellon University
  • MiraHeart, Johns Hopkins University
  • MyLÚA, Cornell University
  • Outmore Living, University of Texas
  • Pathways, Harvard University
  • Pediatrica Therapeutics, University of Arkansas
  • Perseus Materials, Stanford University
  • Pike Robotics, University of Texas
  • Quantanx, Arizona State University
  • Sheza, San Diego State University
  • Skali, Northwestern University
  • Sundial Solar Components, University of Utah
  • Thryft Ship, University of Georgia
  • Tierra Climate, Rice University
  • TrashTrap Sustainability Solutions, Visvesvaraya Technological University (India)
  • Unchained, North Carolina A&T State University
  • Unsmudgeable, Babson College
  • Vivicaly, University of Pennsylvania
  • Zaymo, Brigham Young University
The Rice Business Plan Competition is back in person this year, and these are the 42 teams that will go head to head for investments and prizes. Photo courtesy of Rice University

Rice University's student startup competition names 42 teams to compete for over $1 million in prizes

ready to pitch

The Rice Alliance for Technology and Entrepreneurship and the Jones Graduate School of Business have announced the 42 student teams that will compete in the 2022 Rice Business Plan Competition, which returns to an in-person format on the Rice University campus in April.

Of the teams competing for more than $1 million in prizes and funding in this year's competition, six hail from Texas — two teams each from Rice University, University of Texas at Austin, and Texas A&M University. The student competitors represent 31 universities — including three from European universities. The 42 teams were narrowed down from over 400 applicants and divided into five categories: energy, cleantech and sustainability; life sciences and health care solutions; consumer products and services; hard tech; and digital enterprise.

This is the first in-person RBPC since 2019, and the university is ready to bring together the entrepreneurs and a community of over 250 judges, mentors, and investors to the competition.

“As we come out on the other side of a long and challenging two years, we're feeling a sense of renewal and energy as we look to the future and finding inspiration from the next generation of entrepreneurs who are building a better world,” says Catherine Santamaria, director of the RBPC, in a news release.

“This year's competition celebrates student founders with a strong sense of determination — founders who are ready to adapt, build and grow companies that can change the future,” she continues. “We hope their participation will provide guidance and inspiration for our community.”

According to a news release, this year's RBPC Qualifier Competition, which narrowed down Rice's student teams that will compete in the official competition, saw the largest number of applicants, judges, and participants in the competition’s history. The Rice Alliance awarded a total of $5,000 in cash prizes to the top three teams from the internal qualifier: EpiFresh, Green Room and Anvil Diagnostics. From those three, Rice teams EpiFresh and Green Room received invitations to compete in the 2022 RBPC..

The full list of student teams that will be competing April 7 to 9 this year include:

  • Acorn Genetics from Northwestern University
  • Advanced Optronics from Carnegie Mellon University
  • Aethero Space from University of Missouri
  • AImirr from University of Chicago
  • AiroSolve from UCLA
  • Algeon Materials from UC San Diego
  • Anise Health from Harvard University
  • Beyond Silicon from Arizona State University
  • Bold Move Beverages from University of Texas at Austin
  • Diamante from University of Verona
  • EarthEn from Arizona State University
  • Empower Sleep from University of Pennsylvania
  • EpiFresh from Rice University
  • EpiSLS from University of Michigan
  • Green Room from Rice University
  • Horizon Health Solutions from University of Arkansas
  • Hoth Intelligence from Thomas Jefferson University
  • INIA Biosciences from Boston University
  • Invictus BCI from MIT
  • Invitris from Technical University of Munich (TUM)
  • KLAW Industries from Binghamton University
  • LIDROTEC from RWTH Aachen
  • Locus Lock from University of Texas at Austin
  • LymphaSense from Johns Hopkins University
  • Mallard Bay Outdoors from Louisiana State University
  • Mantel from MIT
  • Olera from Texas A&M University
  • OpenCell AI from Weill Cornell Medicine
  • OraFay from UCLA
  • Pareto from Stanford University
  • Photonect Interconnect Solutions from University of Rochester
  • PLAKK from McGill University
  • PneuTech from Johns Hopkins University
  • Rola from UC San Diego
  • RotorX from Georgia Tech
  • SimulatED from Carnegie Mellon University
  • SuChef from University of Pennsylvania
  • Symetric Finance from Fairfield University
  • Teale from Texas A&M University
  • Team Real Talk from University at Buffalo
  • TransCrypts from Harvard University
  • Woobie from Brigham Young University
Last year's awards had 54 student teams competing virtually, with over $1.4 million in cash and prizes awarded. Throughout RBPC's history, competitors have gone onto raise more than $3.57 billion in capital and more than 259 RBPC alumni have successfully launched their ventures. Forty RBPC startups that have had successful exits through acquisitions or trading on a public market, per the news release.
The 20th annual Rice Business Plan Competition took place virtually from June 17 to 19 and awarded over $1.2 million in investment and cash prizes. Photo courtesy of Rice University

Rice University student startup competition names 2020 winners and awards over $1.2M in prizes

big money

For the 20th year, the Rice Business Plan Competition has awarded prizes and investments to student-led startups from around the ward. While this year's competition was postponed and virtually held, the show went on with 42 startups pitching virtually June 17 to 19.

After whittling down the 42 startups to seven finalists, the RBPC judges named the winners. And, this year, all seven finalists walked away with a monetary prize. Here's how the finalists cleaned up.

  • Aurign, which provides publishing services for recording artists and record labels, from Georgia State University, won first place and the $350,000 grand prize from GOOSE Capital. Aurign also won RG Advisory Partners' prize of $25,000, bringing the company's total to $375,000 won.
  • Coming in second place with a $100,000 investment prize (awarded by Finger Interests, Anderson Family Fund, Greg Novak, and Tracy Druce) was Dartmouth College's nanopathdx, which is creating diagnostic tools for chronic and infectious diseases. Nanopathdx won two other monetary prizes — the $25,000 Spirit of Entrepreneurship Prize from Pearland Economic Development and Ncourage's $25,000 award focused on female entrepreneurs — for a total of $150,000 won. The company also won the Palo Alto Software Live Plan award and an award from SheSpace.
  • Harvard University's Fractal — a cloud computing tech company that enables powerful remote work tools — won third place and a $50,000 investment from Finger Interests, Anderson Family Fund, Greg Novak, and Tracy Druce. The company also won an $100,000 investment from the Houston Angel Network, bringing their total prize to $150,000.
  • In fourth place was RefresherBoxx from RWTH Aachen University in Germany. The company has created disinfecting devices for clothing and recently pivoted to create a COVID-19 application. The startup won a $5,000 prize sponsored by Norton Rose Fulbright for placing in the finals, but also walked away with a $100,000 investment from TiE Houston Angels, bringing the startup's total prize money to $105,000.
  • The University of Chicago's Beltech, which has created a safer, longer lasting battery, won fifth place and a $5,000 award sponsored by EY. The company also won an $100,000 investment from the Houston Angel Network, bringing the total amount won to to $105,000.
  • Cardiosense from Northwestern University, which has created a wearable heart monitor device, took sixth place in the competition and won a $5,000 award sponsored by Chevron Technology Ventures. Cardiosense also won two other monetary prizes — TMC Innovation's $100K TMC Healthcare Innovation investment and NASA's $25,000 Human Health and Performance Award — bringing the total amount won to $130,000. The company also won OFW Law's prize.
  • Relavo, a safer home dialysis treatment company from Johns Hopkins University, came in seventh place and won a $5,000 prize sponsored by Shell Ventures. Relavo also won three other monetary prizes — the $25,000 Pediatric Device Prize from the Southwest National Pediatric Device Consortium, Ncourage's $25,000 award focused on female entrepreneurs, and Polsinelli's $15,000 technology prize — bringing the startup's total prize money to $70,000.
Some of the competition's participating startups outside of the seven finalists won monetary prizes. Here's a list of those.
  • BIOMILQ, a female-founded startup out of Duke University that can cultivate breast milk outside of the body, won The Artemis Fund's $100,000 prize.
  • The University of Maryland's Algen Air — a natural air purifier that uses algae to filter air — won NASA's $25,000 Space Exploration Award.
  • SlumberFlow — a sleep apnea treatment device from the University of Michigan — won the the $25,000 Pediatric Device Prize from the Southwest National Pediatric Device Consortium.
  • Rice University's own EVA, which streamlines vascular access for medical professionals, won the Texas Business Hall of Fame's $25,000 prize.
  • Contraire — a predictive analysis control system for aeration process within municipal wastewater treatment plants — from Oklahoma State University won Polsinelli's $15,000 Energy Innovation prize.
While not ready to name investment recipients at the virtual event, the Owl Investment Group announced they will be inviting some companies to pitch to them directly.
Additional non-monetary prizes included:
  • Capital Factory's Golden Ticket prize to EVA from Rice University, NanoCare from Texas State University, and SeebeckCell Technologies from the University of Texas at Arlington.
  • Mercury Fund's Elevator Pitch winners included: KnoNap from Georgetown University (first place), Steeroflex from the University of California San Diego (second place), Encapsulate from the University of Connecticut (third place), RefresherBoxx (fourth place), and NanoCare from Texas State University (fifth place).
The virtual event wrapped up with the announcement of the 21st annual RBPC, which is set for April 8 to 10 next year.
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

New Rice Brain Institute partners with TMC to award inaugural grants

brain trust

The recently founded Rice Brain Institute has named the first four projects to receive research awards through the Rice and TMC Neuro Collaboration Seed Grant Program.

The new grant program brings together Rice faculty with clinicians and scientists at The University of Texas Medical Branch, Baylor College of Medicine, UTHealth Houston and The University of Texas MD Anderson Cancer Center. The program will support pilot projects that address neurological disease, mental health and brain injury.

The first round of awards was selected from a competitive pool of 40 proposals, and will support projects that reflect Rice Brain Institute’s research agenda.

“These awards are meant to help teams test bold ideas and build the collaborations needed to sustain long-term research programs in brain health,” Behnaam Aazhang, Rice Brain Institute director and co-director of the Rice Neuroengineering Initiative, said in a news release.

The seed funding has been awarded to the following principal investigators:

  • Kevin McHugh, associate professor of bioengineering and chemistry at Rice, and Peter Kan, professor and chair of neurosurgery at the UTMB. McHugh and Kan are developing an injectable material designed to seal off fragile, abnormal blood vessels that can cause life-threatening bleeding in the brain.
  • Jerzy Szablowski, assistant professor of bioengineering at Rice, and Jochen Meyer, assistant professor of neurology at Baylor. Szablowski and Meyer are leading a nonsurgical, ultrasound approach to deliver gene-based therapies to deep brain regions involved in seizures to control epilepsy without implanted electrodes or invasive procedures.
  • Juliane Sempionatto, assistant professor of electrical and computer engineering at Rice, and Aaron Gusdon, associate professor of neurosurgery at UTHealth Houston. Sempionatto and Gusdon are leading efforts to create a blood test that can identify patients at high risk for delayed brain injury following aneurysm-related hemorrhage, which could lead to earlier intervention and improved outcomes.
  • Christina Tringides, assistant professor of materials science and nanoengineering at Rice, and Sujit Prabhu, professor of neurosurgery at MD Anderson, who are working to reduce the risk of long-term speech and language impairment during brain tumor removal by combining advanced brain recordings, imaging and noninvasive stimulation.

The grants were facilitated by Rice’s Educational and Research Initiatives for Collaborative Health (ENRICH) Office. Rice says that the unique split-funding model of these grants could help structure future collaborations between the university and the TMC.

The Rice Brain Institute launched this fall and aims to use engineering, natural sciences and social sciences to research the brain and reduce the burden of neurodegenerative, neurodevelopmental and mental health disorders. Last month, the university's Shepherd School of Music also launched the Music, Mind and Body Lab, an interdisciplinary hub that brings artists and scientists together to study the "intersection of the arts, neuroscience and the medical humanities." Read more here.

Your data center is either closer than you think or much farther away

houston voices

A new study shows why some facilities cluster in cities for speed and access, while others move to rural regions in search of scale and lower costs. Based on research by Tommy Pan Fang (Rice Business) and Shane Greenstein (Harvard).

Key findings:

  • Third-party colocation centers are physical facilities in close proximity to firms that use them, while cloud providers operate large data centers from a distance and sell access to virtualized computing resources as on‑demand services over the internet.
  • Hospitals and financial firms often require urban third-party centers for low latency and regulatory compliance, while batch processing and many AI workloads can operate more efficiently from lower-cost cloud hubs.
  • For policymakers trying to attract data centers, access to reliable power, water and high-capacity internet matter more than tax incentives.

Recent outages and the surge in AI-driven computing have made data center siting decisions more consequential than ever, especially as energy and water constraints tighten. Communities invest public dollars on the promise of jobs and growth, while firms weigh long-term commitments to land, power and connectivity.

Against that backdrop, a critical question comes into focus: Where do data centers get built — and what actually drives those decisions?

A new study by Tommy Pan Fang (Rice Business) and Shane Greenstein (Harvard Business School) provides the first large-scale statistical analysis of data center location strategies across the United States. It offers policymakers and firms a clearer starting point for understanding how different types of data centers respond to economic and strategic incentives.

Forthcoming in the journal Strategy Science, the study examines two major types of infrastructure: third-party colocation centers that lease server space to multiple firms, and hyperscale cloud centers owned by providers like Amazon, Google and Microsoft.

Two Models, Two Location Strategies

The study draws on pre-pandemic data from 2018 and 2019, a period of relative geographic stability in supply and demand. This window gives researchers a clean baseline before remote work, AI demand and new infrastructure pressures began reshaping internet traffic patterns.

The findings show that data centers follow a bifurcated geography. Third-party centers cluster in dense urban markets, where buyers prioritize proximity to customers despite higher land and operating costs. Cloud providers, by contrast, concentrate massive sites in a small number of lower-density regions, where electricity, land and construction are cheaper and economies of scale are easier to achieve.

Third-party data centers, in other words, follow demand. They locate in urban markets where firms in finance, healthcare and IT value low latency, secure storage, and compliance with regulatory standards.

Using county-level data, the researchers modeled how population density, industry mix and operating costs predict where new centers enter. Every U.S. metro with more than 700,000 residents had at least one third-party provider, while many mid-sized cities had none.

ImageThis pattern challenges common assumptions. Third-party facilities are more distributed across urban America than prevailing narratives suggest.

Customer proximity matters because some sectors cannot absorb delay. In critical operations, even slight pauses can have real consequences. For hospital systems, lag can affect performance and risk exposure. And in high-frequency trading, milliseconds can determine whether value is captured or lost in a transaction.

“For industries where speed is everything, being too far from the physical infrastructure can meaningfully affect performance and risk,” Pan Fang says. “Proximity isn’t optional for sectors that can’t absorb delay.”

The Economics of Distance

For cloud providers, the picture looks very different. Their decisions follow a logic shaped primarily by cost and scale. Because cloud services can be delivered from afar, firms tend to build enormous sites in low-density regions where power is cheap and land is abundant.

These facilities can draw hundreds of megawatts of electricity and operate with far fewer employees than urban centers. “The cloud can serve almost anywhere,” Pan Fang says, “so location is a question of cost before geography.”

The study finds that cloud infrastructure clusters around network backbones and energy economics, not talent pools. Well-known hubs like Ashburn, Virginia — often called “Data Center Alley” — reflect this logic, having benefited from early network infrastructure that made them natural convergence points for digital traffic.

Local governments often try to lure data centers with tax incentives, betting they will create high-tech jobs. But the study suggests other factors matter more to cloud providers, including construction costs, network connectivity and access to reliable, affordable electricity.

When cloud centers need a local presence, distance can sometimes become a constraint. Providers often address this by working alongside third-party operators. “Third-party centers can complement cloud firms when they need a foothold closer to customers,” Pan Fang says.

That hybrid pattern — massive regional hubs complementing strategic colocation — may define the next phase of data center growth.

Looking ahead, shifts in remote work, climate resilience, energy prices and AI-driven computing may reshape where new facilities go. Some workloads may move closer to users, while others may consolidate into large rural hubs. Emerging data-sovereignty rules could also redirect investment beyond the United States.

“The cloud feels weightless,” Pan Fang says, “but it rests on real choices about land, power and proximity.”

---

This article originally appeared on Rice Business Wisdom. Written by Scott Pett.

Pan Fang and Greenstein (2025). “Where the Cloud Rests: The Economic Geography of Data Centers,” forthcoming in Strategy Science.

Houston climbs to top 10 spot on North American tech hubs index

tech report

Houston already is the Energy Capital of the World, and now it’s gaining ground as a tech hub.

On Site Selection magazine’s 2026 North American Tech Hub Index, Houston jumped to No. 10 from No. 16 last year. The index relies on data from Site Selection as well as data from CBRE, CompTIA and TeleGeography to rank the continent’s tech hotspots. The index incorporates factors such as internet connectivity, tech talent and facility projects for tech companies.

In 2023, the Greater Houston Partnership noted the region had “begun to receive its due as a prominent emerging tech hub, joining the likes of San Francisco and Austin as a major player in the sector, and as a center of activity for the next generation of innovators and entrepreneurs.”

The Houston-area tech sector employs more than 230,000 people, according to the partnership, and generates an economic impact of $21.2 billion.

Elsewhere in Texas, two other metros fared well on the Site Selection index:

  • Dallas-Fort Worth nabbed the No. 1 spot, up from No. 2 last year.
  • Austin rose from No. 8 last year to No. 7 this year.

San Antonio slid from No. 18 in 2025 to No. 22 in 2026, however.

Two economic development officials in DFW chimed in about the region’s No. 1 ranking on the index:

  • “This ranking affirms what we’ve long seen on the ground — Dallas-Fort Worth is a top-tier technology and innovation center,” said Duane Dankesreiter, senior vice president of research and innovation at the Dallas Regional Chamber. “Our region’s scale, talent base, and diverse strengths … continue to set DFW apart as a national leader.”
  • “Being recognized as the top North American tech hub underscores the strength of the entire Dallas-Fort Worth region as a center of innovation and next-generation technology,” said Robert Allen, president and CEO of the Fort Worth Economic Development Partnership.

While not directly addressing Austin’s Site Selection ranking, Thom Singer, CEO of the Austin Technology Council, recently pondered whether Silicon Hills will grow “into the kind of community that other cities study for the right reasons.”

“Austin tech is not a club. It is not a scene. It is not a hashtag, a happy hour, or any one place or person,” Singer wrote on the council’s blog. “Austin tech is an economic engine and a global brand, built by thousands of people who decided to take a risk, build something, hire others, and be part of a community that is still young enough to reinvent itself.”

South of Austin, Port San Antonio is driving much of that region’s tech activity. Occupied by more than 80 employers, the 1,900-acre tech and innovation campus was home to 18,400 workers in 2024 and created a local economic impact of $7.9 billion, according to a study by Zenith Economics.

“Port San Antonio is a prime example of how innovation and infrastructure come together to strengthen [Texas’] economy, support thousands of good jobs, and keep Texas competitive on the global stage,” said Kelly Hancock, the acting state comptroller.