Fervo Energy's Project Red with Google is officially operational. Photo via blog.google

Google is on a mission to run all of its data centers and office campuses on constant carbon-free energy by 2030, and the tech giant is one step closer to that goal.

Last week, Google announced that its 24/7 carbon-free energy, or CFE, in Nevada to power its local data center in the state is officially operational. The facility is powered by Houston-based Fervo Energy's geothermal technology, a project — called Project Red — that began in 2021 and celebrated its successful pilot this summer.

"When we began our partnership with Fervo, we knew that a first-of-a-kind project like this would require a wide range of technical and operational innovations," Michael Terrell, senior director of energy and climate at Google, writes in a blog post about the partnership.

Fervo relies on tried and true drilling techniques from the oil and gas industry, accessing heat energy that previously has been elusive to traditional geothermal methods, Terrell continues. Fervo dug two horizontal wells at the Nevada plant, as well as installed fiber-optic cables to capture data that tracks performance and other key information.

"The result is a geothermal plant that can produce round-the-clock CFE using less land than other clean energy sources and drawing on skills, knowledge, and supply chains that exist in other industries," Terrell says. "From our early commitment to support the project’s development to its successful completion, we’ve worked closely with Fervo to overcome obstacles and prove that this technology can work."

Google also recently announced a partnership with Project InnerSpace, a nonprofit focused on global geothermal energy development.

Fervo is working on another nearby project, the company announced in September. The 400-milliwatt geothermal energy project in Cape Station, Utah, will start delivering carbon-free power to the grid in 2026, with full-scale production beginning in 2028.

The project, in southwest Utah, is about 240 miles southwest of Salt Lake City and about 240 miles northeast of Las Vegas. Cape Station is adjacent to the U.S. Department of Energy’s Frontier Observatory for Research in Geothermal Energy (FORGE) and near the Blundell geothermal power plant.

------

This article originally ran on EnergyCapital.

Meet the six startups that will be working with Shell and Greentown Labs for the next six months. Photo via Greentown

6 energy tech startups named to corporate-backed manufacturing accelerator

go make

Greentown Labs has named the six participating climatetech startups for an accelerator for a global energy leader.

Shell and Greentown Labs announced the cohort for Greentown Go Make 2023 — a program designed to accelerate partnerships between startups and corporates to advance carbon utilization, storage, and traceability solutions with manufacturing in mind. Shell, which invests in net-zero and carbon-removal technologies, is hoping to strategically align with startups within carbon utilization, storage, and traceability across the energy transition spectrum.

“At Greentown Labs we recognize and appreciate the role energy incumbents must play in the energy transition, and we’re eager to facilitate meaningful partnerships between these impressive startups and Shell—not only to advance these technologies but also to help Shell achieve its sustainability goals,” Kevin Knobloch, CEO and President of Greentown Labs, says in a news release. “We know carbon utilization, storage, and traceability will play a critical role in our collective efforts to reach net-zero, and we’re enthusiastic about the potential impact these companies can have in that work.”

The cohort, selected from 110 applications, is co-located at Greentown's Houston and Somerville, Massachusetts, locations and includes:

  • Portland-based Caravel Bio is developing a novel synthetic biology platform that uses microbial spores and enzymes to create catalysts that are long-lasting and can withstand extreme conditions and environments.
  • Circularise, which is based in the Netherlands, is developing a blockchain platform that provides digital product passports for end-to-end traceability and secure data exchange for industrial supply chains.
  • Corumat, based in Washington, converts organic waste into high-performance, insulating, greaseproof, and biodegradable packaging materials.
  • Cambridge, Massachusetts-headquartered Lydian develops a fully electrified reactor that can convert a variety of gaseous, non-fossil feedstocks into pure syngas with high efficiency.
  • Maple Materials from Richmond, California is developing a low-cost electrolysis process to split carbon dioxide into graphite and oxygen.
  • Ontario, Canada-founded Universal Matter develops a proprietary Flash Joule Heating process that converts carbon waste into high-value and high-performance graphene materials to efficiently create sustainable circular economies.

The program, which includes $15,000 in non-dilutive stipend funding for each company, will work closely with Shell and Greentown over six months via mentorship, networking opportunities, educational workshops, and partnership-focused programming to support collaboration. Go Make 2023 concludes with a showcase event on March 27 at Greentown Labs’ Houston location.

This week, Shell announced another accelerator cohort it's participating in. The Shell GameChanger Accelerator, a partnership with the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL), named four West Coast climatetech companies: DTE Materials, Hexas Biomass, Invizyne Technologies, and ZILA BioWorks. The program provides early-stage cleantech startups with access to experts and facilities to reduce technology development risk and accelerate commercialization of new cleaner technologies.

“Tackling the climate challenge requires multifaceted solutions. At Shell, we believe technology that removes carbon dioxide from the atmosphere will be essential for lowering emissions from energy and chemical products,” Yesim Jonsson, Shell’s GCxN program manager, says in a statement. “The companies in GCxN's sixth cohort embody these objectives and have the potential to usher in a more sustainable future.”

------

This article originally ran on EnergyCapital.

Oceanit's lab, H2XCEL — short for “Hydrogen Accelerator” — aims to integrate hydrogen into the current energy infrastructure, a serious cost-saver for companies looking to make the energy transition. Photo via Getty Images

Hawaii-based tech company opens new lab in Houston to enhance hydrogen pipeline safety

HOU-DRYGEN

An innovative Hawaii-based technology company is saying aloha to Houston with the opening of a unique test laboratory that aims to increase hydrogen pipeline safety. It is the latest sign that Houston is at the forefront of the movement to hydrogen energy.

The lab, H2XCEL — short for “Hydrogen Accelerator” — aims to integrate hydrogen into the current energy infrastructure, a serious cost-saver for companies looking to make the energy transition. Oceanit, a Honolulu-based technology company, is behind the lab.

H2XCEL will be the only lab in the U.S. capable of testing hydrogen and methane mixtures at high temperatures and pressures. Its aim is to protect pipelines from hydrogen embrittlement — when small hydrogen molecules penetrate pipe walls and damage the metal, potentially causing cracks, leaks, and failures.

Photo courtesy of Oceanit

“The launch of this testing facility is a major milestone. It is the only lab of its kind in the U.S. and the work underway at H2XCEL will accelerate the transition toward a hydrogen-driven economy,” Patrick Sullivan, the CEO and founder of Oceanit, says in a news release. “We see a toolset emerging that will enable the U.S. to accelerate toward a low-carbon future.”

Houston was the obvious choice to launch the new lab, says Oceanit’s Direct of Marketing James Andrews.

“Houston is the energy capital of the world," Andrews explains. "Oceanit knew that if we wanted to make inroads with decarbonization technologies, we needed to be physically present there.”

H2XCEL uses Oceanit’s HydroPel pipeline nanotechnology, developed with the support of the U.S. Department of Energy. It is a surface treatment that protects metals, eliminating the need to build new pipelines using expensive, hydrogen-resistant metals. The estimated cost of building new hydrogen pipelines is approximately $4.65 million per mile, according to a press release from the company. In contrast, HydroPel can be applied to existing pipelines to prevent damage, and the cost to refurbish one mile of existing steel pipeline is less than 10 percent of the cost per mile for new pipeline construction.

One of the main objectives of the new Houston lab will be to test hydrogen-methane blends under varying conditions to determine how to use HydroPel safely. By enabling the energy sector to reduce its climate impact while continuing to provide energy using existing infrastructure, methane-hydrogen blends capitalize on hydrogen’s carbon-free energy potential and its positive impact on climate change.

“We want to create a situation where we can speed up energy transition,” says Andrews. “By blending it into a safer environment, we can make it attractive to bigger players.”

Oceanit already has a Houston presence where the team is focused on several other technologies related to hydrogen, including HeatX, a water-based technology for heat transfer surfaces in refineries, power plants, and more, as well as their HALO system, which utilizes directed energy to produce clean hydrogen wastewater and other waste byproducts produced in industrial businesses.

A recent report issued by Rice University’s Baker Institute for Public Policy about the hydrogen economy

in Texas insists that the Lone Star State is an ideal hub for hydrogen as an energy source. The report explains that with the state’s existing oil and gas infrastructure, Texas is the best spot to affordably develop hydrogen while managing economic challenges. The Houston region already produces and consumes a third of the nation’s hydrogen, according to the report, and has more than 50 percent of the country’s dedicated hydrogen pipelines.

------

This article originally ran on EnergyCapital.

Criterion Energy Partners is aiming to be a next-gen energy company. Photo via Getty Images

Houston startup gears up to deliver geothermal energy

ready to drill

Sean Marshall and Danny Rehg founded Criterion Energy Partners in 2020 with the hope that geothermal energy could be the cleaner, safer wave of the future. Less than three years later, the team is close to making their plan a reality thanks to a geothermal well that they hope to drill this year.

Entrepreneurship wasn’t always part of the plan for either partner. When Marshall enrolled in the MBA program at Rice University’s Jones School of Business in 2016, he had a successful career at Credit Suisse and had his eye set on a future political career. But then he met classmate Rehg, whose background was in petroleum engineering. Their wives were both attorneys in the Houston district attorney’s office and the couples became fast friends. They also realized that, as Marshall now puts it, Rehg knew how to drill wells and he knew how to make deals.

In the ensuing years, both Rehg and Marshall's careers evolved and, eventually, the pair started looking for other opportunities. That’s when they read an article in Rolling Stone about geothermal energy.

“It was really a place where it really felt like this was something we were put here to do,” says Marshall.

Marshall and Rehg spent the ensuing months “like rats in a dumpster” learning about the players and opportunities in the geothermal industry and built from there. They learned about Pleasant Bayou Power Plant, a 1989 geothermal energy project based in Brazoria County that was backed by the U.S. Department of Energy.

Last summer, Criterion Energy Partners, a member of Greentown Houston, closed on a 10,000-acre lease around the site of Pleasant Bayou.

"We hope by the end of this year we will be generating electrons,” says Marshall.

Though the company has a patented technology that connects wells to the grid, called Criterion Geothermal System, Marshall says that some of the best advice he’s gotten was, “Don’t fall in love with your technology; fall in love with the problem.” The 2021 Texas freeze reminded the founders what that was.

“People were looking for cleaner, lower-emission power sources and [there was] a need for energy resiliency,” says Marshall, explaining that the freeze created an ideal situation for the company, as people began to think more outside the grid.

The year 2022 was a big one for Criterion Energy Partners. Oil and gas powerhouse Patterson-UTI invested in the company, followed by funding from the Department of Energy. The money not only allowed Criterion Energy Partners to lease their land, they are also now paying 12 salaries, including those of the founders. The team offices in The Cannon’s Esperson coworking space.

“Our mission is to make geothermal commercially viable everywhere,” says Marshall. “I still believe in that.”

However, Criterion Energy Partners may be even bigger than proving an alternative energy source. Marshall says that geothermal is the foundation on which they are building “a next-generation energy company.” Criterion Energy Partners could be the more stable basis for a whole new energy system.

Sean Marshall and Danny Rehg founded Criterion Energy Partners in 2020. Photos courtesy

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University's edtech company receives $90M to lead NSF research hub

major collaboration

An educational technology company based out of Rice University has received $90 million to create and lead a research and development hub for inclusive learning and education research. It's the largest research award in the history of the university.

OpenStax received the grant funding from the U.S. National Science Foundation for a five-year project create the R&D hub called SafeInsights, which "will enable extensive, long-term research on the predictors of effective learning while protecting student privacy," reads a news release from Rice. It's the NSF's largest single investment commitment to national sale education R&D infrastructure.

“We are thrilled to announce an investment of $90 million in SafeInsights, marking a significant step forward in our commitment to advancing scientific research in STEM education,” NSF Director Sethuraman Panchanathan says in the release. “There is an urgent need for research-informed strategies capable of transforming educational systems, empowering our nation’s workforce and propelling discoveries in the science of learning.

"By investing in cutting-edge infrastructure and fostering collaboration among researchers and educators, we are paving the way for transformative discoveries and equitable opportunities for learners across the nation.”

SafeInsights is funded through NSF’s Mid-scale Research Infrastructure-2 (Mid-scale RI-2) program and will act as a central hub for 80 partners and collaborating institutions.

“SafeInsights represents a pivotal moment for Rice University and a testament to our nation’s commitment to educational research,” Rice President Reginald DesRoches adds. “It will accelerate student learning through studies that result in more innovative, evidence-based tools and practices.”

Richard Baraniuk, who founded OpenStax and is a Rice professor, will lead SafeInsights. He says he hopes the initiative will allow progress to be made for students learning in various contexts.

“Learning is complex," Baraniuk says in the release. "Research can tackle this complexity and help get the right tools into the hands of educators and students, but to do so, we need reliable information on how students learn. Just as progress in health care research sparked stunning advances in personalized medicine, we need similar precision in education to support all students, particularly those from underrepresented and low-income backgrounds.”

OpenStax awarded $90M to lead NSF research hub for transformational learning and education researchwww.youtube.com

2 Houston startups selected by US military for geothermal projects

hot new recruits

Two clean energy companies in Houston have been recruited for geothermal projects at U.S. military installations.

Fervo Energy is exploring the potential for a geothermal energy system at Naval Air Station Fallon in Nevada.

Meanwhile, Sage Geosystems is working on an exploratory geothermal project for the Army’s Fort Bliss post in Texas. The Bliss project is the third U.S. Department of Defense geothermal initiative in the Lone Star State.

“Energy resilience for the U.S. military is essential in an increasingly digital and electric world, and we are pleased to help the U.S. Army and [the Defense Innovation Unit] to support energy resilience at Fort Bliss,” Cindy Taff, CEO of Sage, says in a news release.

A spokeswoman for Fervo declined to comment.

Andy Sabin, director of the Navy’s Geothermal Program Office, says in a military news release that previous geothermal exploration efforts indicate the Fallon facility “is ideally suited for enhanced geothermal systems to be deployed onsite.”

As for the Fort Bliss project, Michael Jones, a project director in the Army Office of Energy Initiatives, says it’ll combine geothermal technology with innovations from the oil and gas sector.

“This initiative adds to the momentum of Texas as a leader in the ‘geothermal anywhere’ revolution, leveraging the robust oil and gas industry profile in the state,” says Ken Wisian, associate director of the Environmental Division at the U.S. Bureau of Economic Geology.

The Department of Defense kicked off its geothermal initiative in September 2023. Specifically, the Army, Navy, and Defense Innovation Unit launched four exploratory geothermal projects at three U.S. military installations.

One of the three installations is the Air Force’s Joint Base San Antonio. Canada-based geothermal company Eavor is leading the San Antonio project.

Another geothermal company, Atlanta-based Teverra, was tapped for an exploratory geothermal project at the Army’s Fort Wainwright in Alaska. Teverra maintains an office in Houston.

------

This article originally ran on EnergyCapital.