Two Houston startups won the SXSW Pitch showcase in their respective categories. Photo via Getty Images

Houston had a strong showing at this week's SXSW Pitch showcase in Austin, with two local startups claiming top prizes in their respective categories.

Little Place Labs, a Houston space data startup, won the Security, GovTech & Space competition. Clean-tech company Helix Earth, which spun out of Rice University and was incubated at Greentown Labs, won in the Smart Cities, Transportation & Sustainability contest.

As one of SWSX's marquee events, held March 8-10, the pitch competition featured 45 finalists, selected from 589 applicants, in nine categories.

"We faced impressive competition from a well-chosen set of finalists, and we're honored to be chosen as the winners. One of the judges even commented, ‘Who knew you could make air conditioning sexy,’” Brad Husick, Helix's co-founder and chief business officer, said in a release.

Helix Earth was launched in 2022 and is known for its space capsule air filtration system that was co-developed for NASA. The commercial air conditioner add-on technology, now in a pilot phase, has been used to retrofit HVAC systems for commercial buildings and can save up to 50 percent of the net energy, cutting down on emissions and operating costs, according to the company. Its co-founder and CEO Rawand Rasheed was named to the Forbes 30 Under 30 Energy and Green Tech list for 2025.

“This win validates our mission to drive sustainable innovation in commercial air conditioning and beyond. We are excited about the future of Helix Earth and the impact we will have in reducing energy consumption and emissions," Rasheed said in a statement.

Little Place Labs echoed that sentiment with a post on LinkedIn celebrating the win.

"This all started with a simple mission: To deliver real-time space insights to help first responders, mission planners, and decision-makers act before problems arise,” the post read. "Today, that mission feels even stronger."

The company uses advanced AI and machine learning to deliver near-real-time space analytics for both ground and space-based applications. Its software aims to help first responders, mission planners and decision-makers detect anomalies and make informed decisions quickly. It was co-founded in 2020 at Oxford by Houstonian and CEO Bosco Lai and Gaurav Bajaj and participated in the 2023 AWS Space Accelerator.

Tempesst Droneworx, a veteran-owned software company that provides real-time contextual intelligence for early warning detection, took home the Best Speed Pitch prize.

Jesse Martinez, founder of invincible, and Anu Puvvada of KPMG were two judges representing Houston.

According to SXSW, 647 companies have participated in SXSW Pitch over the years, with over 93 percent receiving funding and acquisitions totaling nearly $23.2 billion. See the full list of 2025 winners here.

Houston-based WellWorth was selected as the winner of this year’s Houston Startup Showcase. Photo courtesy of the Ion

Houston energy startup wins Ion's annual showcase, pitch competition

1st place

The Ion hosted its annual startup pitch competition, and one company walked away with a win.

WellWorth, a financial modeling and analysis software-as-a-service company for the upstream energy sector, won the Houston Startup Showcase + Expo and secured a $5,000 prize. The startup's technology introduces a more streamlined approach to NAV modeling or corporate financial modeling for its users.

“Having worked in investment banking, I have seen firsthand how the limitations of Excel models and a lack of bespoke tools have led to inefficient workflows in upstream Oil & Gas finance," says Samra Nawaz, CEO and Co-founder of WellWorth, in a statement. "We decided to solve this problem by building a cloud-based platform that helps energy finance leaders improve decision-making around raising, managing, and deploying capital.”

Nawaz explains how impactful the opportunity to pitch has been on WellWorth, which aims to raise funding early next year accelerate customer acquisition and product development.

“By getting involved in the Ion’s innovation ecosystem, we’ve been able to not only network with many entrepreneurs and innovators in the Houston community, but also find opportunities to scale our growth,” continues Nawaz. “We’re thrilled to have brought a few more customers onboard recently, and are working closely with them to optimize our product pipeline."

The company pitched alongside the other five finalists, which included Tierra Climate, MRG Health, BeOne Sports, Trez, and Mallard Bay. Mallard Bay, a booking platform for hunting and fishing trips, secured the people's choice award, which was decided by the crowd.

“Our flagship event, Houston Startup Showcase, not only connects startups and entrepreneurs with top business leaders but also provides them an opportunity to pitch their innovations to the technology ecosystem,” says Jan Odegard, executive director of the Ion, in a news release. “We extend our congratulations to WellWorth and the company’s innovative SaaS platform for energy industry finance teams, as well as Mallard Bay, the People’s Choice winner. These companies are exemplifying the exciting new technologies being developed in Houston today.”

In addition to the pitches, several companies showcased at the event, including Nanotech, manufacturer of thermal management materials for the built environment; last year's winner Unytag, a universal toll tag that provides drivers the ability to pass through tolls anywhere in the nation; and Softeq, provides early-stage innovation, technology business consulting, and full-stack development solutions to enterprise companies and innovative startups.

------

This article originally ran on EnergyCapital.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston doctor wins NIH grant to test virtual reality for ICU delirium

Virtual healing

Think of it like a reverse version of The Matrix. A person wakes up in a hospital bed and gets plugged into a virtual reality game world in order to heal.

While it may sound far-fetched, Dr. Hina Faisal, a Houston Methodist critical care specialist in the Department of Surgery, was recently awarded a $242,000 grant from the National Institute of Health to test the effects of VR games on patients coming out of major surgery in the intensive care unit (ICU).

The five-year study will focus on older patients using mental stimulation techniques to reduce incidences of delirium. The award comes courtesy of the National Institute on Aging K76 Paul B. Beeson Emerging Leaders Career Development Award in Aging.

“As the population of older adults continues to grow, the need for effective, scalable interventions to prevent postoperative complications like delirium is more important than ever,” Faisal said in a news release.

ICU delirium is a serious condition that can lead to major complications and even death. Roughly 87 percent of patients who undergo major surgery involving intubation will experience some form of delirium coming out of anesthesia. Causes can range from infection to drug reactions. While many cases are mild, prolonged ICU delirium may prevent a patient from following medical advice or even cause them to hurt themselves.

Using VR games to treat delirium is a rapidly emerging and exciting branch of medicine. Studies show that VR games can help promote mental activity, memory and cognitive function. However, the full benefits are currently unknown as studies have been hampered by small patient populations.

Faisal believes that half of all ICU delirium cases are preventable through VR treatment. Currently, a general lack of knowledge and resources has been holding back the advancement of the treatment.

Hopefully, the work of Faisal in one of the busiest medical cities in the world can alleviate that problem as she spends the next half-decade plugging patients into games to aid in their healing.

Houston scientists develop breakthrough AI-driven process to design, decode genetic circuits

biotech breakthrough

Researchers at Rice University have developed an innovative process that uses artificial intelligence to better understand complex genetic circuits.

A study, published in the journal Nature, shows how the new technique, known as “Combining Long- and Short-range Sequencing to Investigate Genetic Complexity,” or CLASSIC, can generate and test millions of DNA designs at the same time, which, according to Rice.

The work was led by Rice’s Caleb Bashor, deputy director for the Rice Synthetic Biology Institute and member of the Ken Kennedy Institute. Bashor has been working with Kshitij Rai and Ronan O’Connell, co-first authors on the study, on the CLASSIC for over four years, according to a news release.

“Our work is the first demonstration that you can use AI for designing these circuits,” Bashor said in the release.

Genetic circuits program cells to perform specific functions. Finding the circuit that matches a desired function or performance "can be like looking for a needle in a haystack," Bashor explained. This work looked to find a solution to this long-standing challenge in synthetic biology.

First, the team developed a library of proof-of-concept genetic circuits. It then pooled the circuits and inserted them into human cells. Next, they used long-read and short-read DNA sequencing to create "a master map" that linked each circuit to how it performed.

The data was then used to train AI and machine learning models to analyze circuits and make accurate predictions for how untested circuits might perform.

“We end up with measurements for a lot of the possible designs but not all of them, and that is where building the (machine learning) model comes in,” O’Connell explained in the release. “We use the data to train a model that can understand this landscape and predict things we were not able to generate data on.”

Ultimately, the researchers believe the circuit characterization and AI-driven understanding can speed up synthetic biology, lead to faster development of biotechnology and potentially support more cell-based therapy breakthroughs by shedding new light on how gene circuits behave, according to Rice.

“We think AI/ML-driven design is the future of synthetic biology,” Bashor added in the release. “As we collect more data using CLASSIC, we can train more complex models to make predictions for how to design even more sophisticated and useful cellular biotechnology.”

The team at Rice also worked with Pankaj Mehta’s group in the department of physics at Boston University and Todd Treangen’s group in Rice’s computer science department. Research was supported by the National Institutes of Health, Office of Naval Research, the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation, the American Heart Association, National Library of Medicine, the National Science Foundation, Rice’s Ken Kennedy Institute and the Rice Institute of Synthetic Biology.

James Collins, a biomedical engineer at MIT who helped establish synthetic biology as a field, added that CLASSIC is a new, defining milestone.

“Twenty-five years ago, those early circuits showed that we could program living cells, but they were built one at a time, each requiring months of tuning,” said Collins, who was one of the inventors of the toggle switch. “Bashor and colleagues have now delivered a transformative leap: CLASSIC brings high-throughput engineering to gene circuit design, allowing exploration of combinatorial spaces that were previously out of reach. Their platform doesn’t just accelerate the design-build-test-learn cycle; it redefines its scale, marking a new era of data-driven synthetic biology.”