UH ranked No. 8 in Texas. Photo courtesy of University of Houston

Houston universities are ramping up high quality educational experiences for their students as three local universities earn top 10 ranks for the best Texas colleges in 2024, according to a new report by U.S. News and World Report.

Rice University claimed the top spot in Texas, and ranked No. 17 in the national ranking. Houston's "Ivy League of the South" had an undergraduate enrollment of nearly 4,500 students in fall 2022. In April, Rice's Jones School of Business ranked No. 2 in U.S. News' ranking of the best graduate programs in Texas.

According to Rice's profile, the university also prides itself as a top-tier research institution. In fact, Rice just opened a massive new research facility on campus.

A degree from Rice University in Houston was ranked most valuable in the state of Texas. Rice University

"From your first semester on campus, no matter your major, you'll have the opportunity to conduct research alongside experts," the school said. "You'll be able to apply your skills, gain valuable professional experience and interact with industry leaders as you address real-world issues."

The University of Houston ranked No. 8 in the Texas rankings, and No. 133 in the national report. With a total undergraduate enrollment of nearly 38,000 students in fall 2022, U.S. News says the university has a rich campus culture that encourages students to participate in different organizations and activities.

"Each year, students turn the campus into a town called Fiesta City in time for the Frontier Fiesta, a string of concerts, talent shows, cook-offs and more," U.S. News' overview said. "There are more than 400 student organizations to check out, including fraternities and sororities."

Completing the Texas top 10 is the University of St. Thomas, which ranked No. 216 nationally. The private Catholic university has the smallest fall 2022 undergraduate enrollment out of all three Houston universities: 2,729 students.

Elsewhere in Texas, nearby Texas A&M University in College Station earned the title for the third-best college in Texas, and No. 47 in the nation. That's big news for one of the fastest-growing college towns in the U.S.

U.S. News' top 10 best colleges in Texas in 2024 are:

  • No. 1 – Rice University, Houston
  • No. 2 – University of Texas at Austin
  • No. 3 – Texas A&M University, College Station
  • No. 4 – Southern Methodist University, Dallas
  • No. 5 – Baylor University, Waco
  • No. 6 – Texas Christian University, Fort Worth
  • No. 7 – The University of Texas at Dallas, Richardson
  • No. 8 – University of Houston
  • No. 9 – Texas Tech University, Lubbock
  • No. 10 – University of St. Thomas, Houston

The full rankings can be found on usnews.com.

------

This article originally ran on CultureMap.

Rice has been heralded again by Princeton Review. Photo courtesy of Rice University

Rice University named one of the greatest schools in U.S. in prestigious new report

RICE RISES AGAIN

Just mere weeks after being named the No. 7 university in the nation, a local hall of higher learning has just landed on yet another prestigious list.
Rice University has scored high marks in the Princeton Review's annual survey on the nation's best colleges. The new report as part of "The Best 387 Colleges," its 30th annual snapshot of academic excellence at colleges and universities.

The new report analyzes three decades of reviews on America's institutions of higher education and is based upon reviews submitted by more than 150,000 students nationwide, per a release. The survey lists the top-ranking schools measured in dozens of different categories.

For its 2022 anniversary edition, Princeton Review analyzed which colleges and universities have "the most impressive history of appearances" since 1992.

Notably, per a press release, only four institutions were named to 11 of what the review calls its "Great Lists" — and one of those schools is Rice.

To generate this report, Princeton Review analyzed three criteria: the number of times a college appeared on lists since 1992, its numerical rank on those lists, and the overall consistency of feedback from the college's students over the three decades.

Specifically, Rice ranked on the "Great Lists" in the following categories:

  • great race/class interaction
  • great financial aid
  • great health services
  • great-run colleges
  • most loved colleges
  • great college newspapers
  • great college dorms
  • great quality of life
  • great town-gown relations
  • LGBTQ-friendly
  • happy students

Rice students praised the university's faculty and described a "high quality of life" and are among "the happiest students in the United States," according to a press release.

"I wanted my college years to be both happy and successful," one student wrote in the survey. "And I found no other schools that were as prestigious, but also dedicated to ensuring the happiness of the student body."

As CultureMap previously reported, Niche ranked Rice No. 7 in its latest ratings of the best colleges in the U.S. and No. 1 in Texas.

Rice also ranked No. 136 internationally in The Wall Street Journal/Times Higher Education World University Rankings for 2022.

------

This article originally ran on CultureMap.

The device is lighter than a Band-Aid and could be used as robot skin to track movement and health conditions. Photo via uh.edu

University of Houston professors identify super thin wearable device

Data collecting skin

Imagine a wearable device so thin it's less noticeable and lighter than a Band-Aid but can track and record important health information. According to some University of Houston researchers, you might not need to imagine it at all.

A recent paper, which ran as the cover story in Science Advances, identified a wearable human-machine interface device that is so thin a wearer might not even notice it. Cunjiang Yu, a Bill D. Cook associate professor of Mechanical Engineering at the University of Houston, was the lead author for the paper.

"Everything is very thin, just a few microns thick," says Yu, who also is a principal investigator at the Texas Center for Superconductivity at UH, in a release. "You will not be able to feel it."

The device is reported in the paper to be made of a metal oxide semiconductor on a polymer base. It could be attached to a robotic hand or prosthetic, as well as other robotic devices, that can collect and report information to the wearer.

"What if when you shook hands with a robotic hand, it was able to instantly deduce physical condition?" Yu asks in the release.

The device could also be used to help make decisions in situations that are hazardous to humans, such as chemical spills.

Current devices on the market or being developed are much slower to respond and bulkier to wear, not to mention expensive to develop.

"We report an ultrathin, mechanically imperceptible, and stretchable (human-machine interface) HMI device, which is worn on human skin to capture multiple physical data and also on a robot to offer intelligent feedback, forming a closed-loop HMI," the researchers write in the paper. "The multifunctional soft stretchy HMI device is based on a one-step formed, sol-gel-on-polymer-processed indium zinc oxide semiconductor nanomembrane electronics."

The paper's co-authors, in addition to Yu, include first author Kyoseung Sim, Zhoulyu Rao, Faheem Ershad, Jianming Lei, Anish Thukral, and Jie Chen, who are all from UH; Zhanan Zou and Jianliang Xiao of the University of Colorado; and Qing-An Huang of Southeast University in Nanjing, China.


Soft Wearable Multifunctional Human-Machine Interfaces (HMIs)www.youtube.com

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston doctor wins NIH grant to test virtual reality for ICU delirium

Virtual healing

Think of it like a reverse version of The Matrix. A person wakes up in a hospital bed and gets plugged into a virtual reality game world in order to heal.

While it may sound far-fetched, Dr. Hina Faisal, a Houston Methodist critical care specialist in the Department of Surgery, was recently awarded a $242,000 grant from the National Institute of Health to test the effects of VR games on patients coming out of major surgery in the intensive care unit (ICU).

The five-year study will focus on older patients using mental stimulation techniques to reduce incidences of delirium. The award comes courtesy of the National Institute on Aging K76 Paul B. Beeson Emerging Leaders Career Development Award in Aging.

“As the population of older adults continues to grow, the need for effective, scalable interventions to prevent postoperative complications like delirium is more important than ever,” Faisal said in a news release.

ICU delirium is a serious condition that can lead to major complications and even death. Roughly 87 percent of patients who undergo major surgery involving intubation will experience some form of delirium coming out of anesthesia. Causes can range from infection to drug reactions. While many cases are mild, prolonged ICU delirium may prevent a patient from following medical advice or even cause them to hurt themselves.

Using VR games to treat delirium is a rapidly emerging and exciting branch of medicine. Studies show that VR games can help promote mental activity, memory and cognitive function. However, the full benefits are currently unknown as studies have been hampered by small patient populations.

Faisal believes that half of all ICU delirium cases are preventable through VR treatment. Currently, a general lack of knowledge and resources has been holding back the advancement of the treatment.

Hopefully, the work of Faisal in one of the busiest medical cities in the world can alleviate that problem as she spends the next half-decade plugging patients into games to aid in their healing.

Houston scientists develop breakthrough AI-driven process to design, decode genetic circuits

biotech breakthrough

Researchers at Rice University have developed an innovative process that uses artificial intelligence to better understand complex genetic circuits.

A study, published in the journal Nature, shows how the new technique, known as “Combining Long- and Short-range Sequencing to Investigate Genetic Complexity,” or CLASSIC, can generate and test millions of DNA designs at the same time, which, according to Rice.

The work was led by Rice’s Caleb Bashor, deputy director for the Rice Synthetic Biology Institute and member of the Ken Kennedy Institute. Bashor has been working with Kshitij Rai and Ronan O’Connell, co-first authors on the study, on the CLASSIC for over four years, according to a news release.

“Our work is the first demonstration that you can use AI for designing these circuits,” Bashor said in the release.

Genetic circuits program cells to perform specific functions. Finding the circuit that matches a desired function or performance "can be like looking for a needle in a haystack," Bashor explained. This work looked to find a solution to this long-standing challenge in synthetic biology.

First, the team developed a library of proof-of-concept genetic circuits. It then pooled the circuits and inserted them into human cells. Next, they used long-read and short-read DNA sequencing to create "a master map" that linked each circuit to how it performed.

The data was then used to train AI and machine learning models to analyze circuits and make accurate predictions for how untested circuits might perform.

“We end up with measurements for a lot of the possible designs but not all of them, and that is where building the (machine learning) model comes in,” O’Connell explained in the release. “We use the data to train a model that can understand this landscape and predict things we were not able to generate data on.”

Ultimately, the researchers believe the circuit characterization and AI-driven understanding can speed up synthetic biology, lead to faster development of biotechnology and potentially support more cell-based therapy breakthroughs by shedding new light on how gene circuits behave, according to Rice.

“We think AI/ML-driven design is the future of synthetic biology,” Bashor added in the release. “As we collect more data using CLASSIC, we can train more complex models to make predictions for how to design even more sophisticated and useful cellular biotechnology.”

The team at Rice also worked with Pankaj Mehta’s group in the department of physics at Boston University and Todd Treangen’s group in Rice’s computer science department. Research was supported by the National Institutes of Health, Office of Naval Research, the Robert J. Kleberg Jr. and Helen C. Kleberg Foundation, the American Heart Association, National Library of Medicine, the National Science Foundation, Rice’s Ken Kennedy Institute and the Rice Institute of Synthetic Biology.

James Collins, a biomedical engineer at MIT who helped establish synthetic biology as a field, added that CLASSIC is a new, defining milestone.

“Twenty-five years ago, those early circuits showed that we could program living cells, but they were built one at a time, each requiring months of tuning,” said Collins, who was one of the inventors of the toggle switch. “Bashor and colleagues have now delivered a transformative leap: CLASSIC brings high-throughput engineering to gene circuit design, allowing exploration of combinatorial spaces that were previously out of reach. Their platform doesn’t just accelerate the design-build-test-learn cycle; it redefines its scale, marking a new era of data-driven synthetic biology.”