Revealed at an event earlier this month, the Ion is now home to installations by Houston-based artists Christopher Blay and Kill Joy, which play on the traditional window displays the building hosted for years as the historic Sears Building. Photo courtesy of Marc Furi Creative/the Ion

Two new art installations at the Ion speak to the building's past and its potential future.

Revealed at an event earlier this month, the innovation hub developed by Rice University is now home to installations by Houston-based artists Christopher Blay and Kill Joy, which play on the traditional window displays the building hosted for years as the historic Sears Building.

The pieces are part of the Ion's Eye on Art program, according to a release. Each was selected by the Ion and Ion District Art Advisory Council with support from Piper Faust.

"Innovation and art have a lot more in common than you might think. Many of our local artists learn how to use emerging technologies to create their pieces and hone their craft,” Jan E. Odegard, executive director of the Ion, says in a statement. “Creativity plays a vital role in fostering innovation and we’re honored to provide artists like Christopher and Kill Joy with a platform to serve as an inspiration for the entire innovation ecosystem here at the Ion.”

Blay, who's an artist, writer and currently serves as the chief curator of the Houston Museum of African American Culture, created his installation in collaboration with the Ion Prototyping Lab. Using canvases and wood frames, the installation depicts slaving vessels and spaceships to "symbolizes where the Black community has been and where they are going," according to the Ion.

The installation is part of Blay's latest body of work, “The SpLaVCe Program."

Joy's work focuses on environmental and social justice. Her installation at the Ion, “Creation, Current, Solution," uses animated puppets inspired by Filipino folklore to explore the intersection of technology and sustainable living.

Blay and Joy's installations will be on display for the next six months, and will rotate out to feature other Houston-based artists' work.

The Ion first launched the The Eye On Art Program in March 2022. The debut displays included Lina Dib’s over-the-top kitsch “Self-Portrait in the Garden” and Preston Gaines' multi-sensory “Fantasy Landscape.” The second rotation featured Lisa Morales and Stacey Gresell’s “The Collective Hive” and “Exploración Orgánica” by Maria Rodriguez, Miriam Mireles, Bryce Saucier, Timothy Hudson, and Victoria Armenta: “Exploración Orgánica”

Earlier this summer, the Ion also announced that it would launch its official workforce development partner’s 12- to 15- week technology skills training courses this fall.

Click through photos from the new installation below.

“The SpLaVCe Program" by Christopher Blay

Photo courtesy of Marc Furi Creative/the Ion

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston leaders form coalition to boost Texas power grid with new tech

a better grid

A Houston-based coalition that launched this month aims to educate Texas officials about technology designed to shore up the state’s power grid.

The public-private Texas Reliability Coalition says it will promote utility-scale microgrid technology geared toward strengthening the resilience and reliability of the Texas power grid, particularly during extreme weather.

A utility-operated microgrid is a group of interconnected power loads and distributed energy sources that can operate in tandem with or apart from regular power grids, such as the grid run by the Electric Reliability Council of Texas (ERCOT). Legislation passed in 2023 enables the use of utility-scale microgrid technology in Texas’ deregulated energy market, according to the coalition.

John Elder, executive director of the coalition, says that with the legal framework now in place, the Public Utility Commission of Texas and ERCOT need to create rules to establish the Texas marketplace for microgrid technology. The goal, he says, is to “take the Texas grid from good to great” by installing microgrid technology, improving the infrastructure, and strengthening the system — all targeted toward meeting power needs during extreme weather and amid growing demand.

Houston-based CenterPoint Energy will test the utility-scale microgrid technology being promoted by the coalition. In a January 31 filing with the Public Utility Commission, CenterPoint says microgrid technology will be featured in a $36.5 million pilot program that’ll set up an estimated three to five microgrids in the company’s service area. The pilot program is slated to last from 2026 to 2028.

In the public affairs arena, five Houston executives are leading the new reliability commission’s microgrid initiative.

Elder, one of the coalition’s founding members, is president and CEO of Houston-based Acclaim Energy. Other founders include Ember Real Estate Investment & Development, Park Eight Development, and PowerSecure. Ember and Park Eight are based in Houston. Durham, North Carolina-based PowerSecure, which produces microgrid technology, is a subsidiary of energy provider Southern Co.

Aside from Elder, members of the coalition’s board are:

  • Stewart Black, board secretary of the coalition and vice president of Acclaim Energy’s midstream division
  • Todd Burrer, president of municipal utility districts at Inframark
  • Harry Masterson, managing principal of Ember
  • Martin Narendorf, former vice president at CenterPoint Energy

———

This article originally appeared on our sister site, EnergyCapital.

This Houston neighbor is the fastest growing wealthy suburb in America

By The Numbers

The Houston-area city of Fulshear is booming like nowhere else: It's now the No. 1 fast-growing affluent suburb in the country.

Fulshear's No. 1 status was unveiled in a new GoBankingRates' study that ranked the "30 Fastest Growing Wealthy Suburbs in America" for 2025. The report examined population changes from 2018 to 2023 among cities and towns in major U.S. metro areas with populations between 25,000 and 100,000 residents. Median household income, average home value, and a "livability score" were also calculated for each locale.

Fulshear, located 34 miles west of downtown Houston, experienced the most dramatic population increase out of all 30 cities in the report. Though the suburb only has an estimated population of 42,616 residents, that number has skyrocketed 237 percent during the five-year period.

A Fulshear resident's median income is $178,398 annually, and the average value of a home in the city comes out to $521,157, the report additionally found.

Fulshear was the second fastest growing city in America in 2023. The city's growth is further reflected by the number of new apartments that were built in the area in 2024.

Texas is tops
Texas cities took the top three fastest growing U.S. suburbs for 2025, with Dallas-area cities of Celina (No. 2) and Prosper (No. 3) experiencing wildly different (yet still sky high) population changes. Celina's population ballooned 190 percent to 43,317 residents, while Prosper's grew 81 percent to an estimated 41,660 people.

Other Texas cities that earned spots in the report include Flower Mound (No. 19), Southlake (No. 27), University Park (No. 28) and Colleyville (No. 29), all in the Dallas-Fort Worth area.

"The old adage that everything is bigger in Texas is true, considering the number of Lone Star State suburbs that are quickly growing in population and overall wealth," the report's author wrote.

The top 10 fastest growing wealthy suburbs in America are:

  • No. 1 – Fulshear, Texas
  • No. 2 – Celina, Texas
  • No. 3 – Prosper, Texas
  • No. 4 – Erie, Colorado
  • No. 5 – Clarksburg, Maryland
  • No. 6 – Zionsville, Indiana
  • No. 7 – Redmond, Washington
  • No. 8 – Dublin, California
  • No. 9 – Parkland, Florida
  • No. 10 – Eastvale, California
---

This story originally appeared on our sister site CultureMap.com.

Rice research breakthrough paves the way for advanced disease therapies

study up

Bioengineers at Rice University have developed a “new construction kit” for building custom sense-and-respond circuits in human cells, representing a major breakthrough in the field of synthetic biology, which could "revolutionize" autoimmune disease and cancer therapeutics.

In a study published in the journal Science, the team focused on phosphorylation, a cellular process in the body in which a phosphate group is added to a protein, signaling a response. In multicellular organisms, phosphorylation-based signaling can involve a multistage, or a cascading-like effect. Rice’s team set out to show that each cycle in a cascade can be treated as an elementary unit, meaning that they can be reassembled in new configurations to form entirely novel pathways linking cellular inputs and outputs.

Previous research on using phosphorylation-based signaling for therapeutic purposes has focused on re-engineering pathways.

“This opens up the signaling circuit design space dramatically,” Caleb Bashor, assistant professor of bioengineering and biosciences and corresponding author on the study, said in a news release. “It turns out, phosphorylation cycles are not just interconnected but interconnectable … Our design strategy enabled us to engineer synthetic phosphorylation circuits that are not only highly tunable but that can also function in parallel with cells’ own processes without impacting their viability or growth rate.”

Bashor is the deputy director for the Rice Synthetic Biology Institute, which launched last year.

The Rice lab's sense-and-respond cellular circuit design is also innovative because phosphorylation occurs rapidly. Thus, the new circuits could potentially be programmed to respond to physiological events in minutes, compared to other methods, which take hours to activate.

Rice’s team successfully tested the circuits for sensitivity and their ability to respond to external signals, such as inflammatory issues. The researchers then used the framework to engineer a cellular circuit that can detect certain factors, control autoimmune flare-ups and reduce immunotherapy-associated toxicity.

“This work brings us a whole lot closer to being able to build ‘smart cells’ that can detect signs of disease and immediately release customizable treatments in response,” Xiaoyu Yang, a graduate student in the Systems, Synthetic and Physical Biology Ph.D. program at Rice who is the lead author on the study, said in a news release.

Ajo-Franklin, a professor of biosciences, bioengineering, chemical and biomolecular engineering and a Cancer Prevention and Research Institute of Texas Scholar, added “the Bashor lab’s work vaults us forward to a new frontier — controlling mammalian cells’ immediate response to change.”