The opportunities to reach and empower underserved populations to participate in the health care workforce are limitless. Photo via Getty Images

Houston houses one of the most renowned medical communities in the world. However, Texas' current health care workforce shortage has severely impacted the city, with large swaths of the Gulf Coast Region deemed medically underserved. Thousands of Houstonians are impacted year after year due to the lack of access to life-saving medical care.

The obvious solution to this problem is to form a pipeline of health care workers by equipping students with the necessary skills and education to fill this gap. Sadly, many individuals who lack opportunity yet aspire to pursue a career in the health care industry face barriers related to childcare, transportation, mentorship gaps and life's unexpected circumstances.

Dwyer Workforce Development (DWD), a national health care training nonprofit, has recently expanded its footprint to Texas and has joined Houston Community College (HCC), one of the largest community colleges in the country, to provide life-changing support and create a pipeline of new health care workers, many who come from underserved areas.

Last year, our organizations launched the Dwyer Scholar Apprenticeship program, which is actively enrolling to combat the health care shortage and bring opportunities to those lacking. Working together, we are supporting apprentices each year to earn their Certified Nurse Aide (CNA) certificates, where students can choose a Phlebotomy or EKG specialization, helping our city meet the demand for one of the most essential and in-demand jobs in health care each year. Our program will help address Texas' loss of 36 percent of its CNAs over the past decade while providing gateways for highly motivated students—Dwyer Scholars—to thrive in long-term health care careers.

We know financial barriers prevent many potential health care workers from obtaining the certifications needed to enter the workforce. That's why we are bringing our innovative programs together, enabling Scholars to earn while they learn and opening doors for those who do not have the financial luxury of completing their training in a traditional educational atmosphere.

After enrollment, DWD continues to provide case management and additional financial support for pressures like housing, childcare, and transportation so Scholars don't have to put their work before their education. Scholars are placed with employers during the program, where they complete their apprenticeships and begin full-time employment following graduation.

The Texas Workforce Commission has identified apprenticeship programs as a key area for expansion to meet employer demand for skilled workers. Through our partnership, we are doing just that – and the model is proven. More than 85 percent of DWD Scholars in Maryland, where the program was established, have earned their certificates and are now employed or on track to begin their careers.

Our work doesn't end here. Over the next decade, Texas will face a shortage of 57,000 skilled nurses. Texas must continue to expand awareness and access to key workforce training programs to improve outcomes for diverse needs. Our organizations are working to vastly expand our reach, making the unattainable attainable and helping to improve the lives and health of our community.

No one's past or present should dictate their future. Everyone deserves access to health care, the ability to further their education and the chance to set and achieve life goals. The opportunities to reach and empower underserved populations to participate in the health care workforce are limitless.

------

Barb Clapp is CEO of Dwyer Workforce Development, a nonprofit that supports individuals who aspire to pursue a career in the health care industry. Christina Robinson is the executive director for work-based learning and industry partnerships at Houston Community College.

The grant will allow about 50 students to become certified aerospace technicians in electrical, composite, or structural tracts. Photo via San Jacinto College

Houston college receives grant to support aerospace technician training

workforce funding

The Texas Workforce Commission granted $332,000 to three Houston-area organizations last month to support aerospace technician training for unemployed and displaced workers, as well as recent high school grads.

The funding will go toward BayTech, Bay Area Houston Economic Partnership and San Jacinto College, and comes out of the TWC's Texas Talent Connection grant. The TWC awarded a similar grant to Lone Star College in January with the goal of supporting "innovative education and workforce skills training programs" for first-generation students in six different industries.

This most recent grant will allow about 50 students to become certified aerospace technicians in electrical, composite, or structural tracts.

After advancing through the program, they'll receive a completion certificate from the San Jacinto College's EDGE Center and will have the opportunity to sit for a nationally recognized certification exam.

According to a release from San Jacinto College, the organizations will also facilitate students' placement directly into the workforce.

"Funding like this grant from the Texas Workforce Commission to further our training offerings reaches far beyond our students to the future of the aerospace industry, Brenda Hellyer, chancellor of San Jacinto College, said in a statement. "A skilled workforce is critical to the success of the Houston Spaceport and the aerospace industries that support it, and we understand our role in providing the next generation of aerospace technicians."

San Jacinto College, which is the official education training partner for the Houston Spaceport at Ellington Airport, launched the EDGE Center in 2020.

The center aims to train future aerospace professionals through its technician programs as well as a general aerospace program and a drone pilot program. To date, about 30 students have earned their credentials .

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston engineers develop breakthrough device to advance spinal cord treatment

future of health

A team of Rice University engineers has developed an implantable probe over a hundred times smaller than the width of a hair that aims to help develop better treatments for spinal cord disease and injury.

Detailed in a recent study published in Cell Reports, the probe or sensor, known as spinalNET, is used to explore how neurons in the spinal cord process sensation and control movement, according to a statement from Rice. The research was supported by the National Institutes of Health, Rice, the California-based Salk Institute for Biological Studies, and the philanthropic Mary K. Chapman Foundation based in Oklahoma.

The soft and flexible sensor was used to record neuronal activity in freely moving mice with high resolution for multiple days. Historically, tracking this level of activity has been difficult for researchers because the spinal cord and its neurons move so much during normal activity, according to the team.

“We developed a tiny sensor, spinalNET, that records the electrical activity of spinal neurons as the subject performs normal activity without any restraint,” Yu Wu, a research scientist at Rice and lead author of the study said in a statement. “Being able to extract such knowledge is a first but important step to develop cures for millions of people suffering from spinal cord diseases.”

The team says that before now the spinal cord has been considered a "black box." But the device has already helped the team uncover new findings about the body's rhythmic motor patterns, which drive walking, breathing and chewing.

Lan Luan (from left), Yu Wu, and Chong Xie are working on the breakthrough device. Photo by Jeff Fitlow/Rice University

"Some (spinal neurons) are strongly correlated with leg movement, but surprisingly, a lot of neurons have no obvious correlation with movement,” Wu said in the statement. “This indicates that the spinal circuit controlling rhythmic movement is more complicated than we thought.”

The team said they hope to explore these findings further and aim to use the technology for additional medical purposes.

“In addition to scientific insight, we believe that as the technology evolves, it has great potential as a medical device for people with spinal cord neurological disorders and injury,” Lan Luan, an associate professor of electrical and computer engineering at Rice and a corresponding author on the study, added in the statement.

Rice researchers have developed several implantable, minimally invasive devices to address health and mental health issues.

In the spring, the university announced that the United States Department of Defense had awarded a four-year, $7.8 million grant to the Texas Heart Institute and a Rice team led by co-investigator Yaxin Wang to continue to break ground on a novel left ventricular assist device (LVAD) that could be an alternative to current devices that prevent heart transplantation.

That same month, the university shared news that Professor Jacob Robinson had published findings on minimally invasive bioelectronics for treating psychiatric conditions. The 9-millimeter device can deliver precise and programmable stimulation to the brain to help treat depression, obsessive-compulsive disorder and post-traumatic stress disorder.

Houston clean hydrogen startup to pilot tech with O&G co.

stay gold

Gold H2, a Houston-based producer of clean hydrogen, is teaming up with a major U.S.-based oil and gas company as the first step in launching a 12-month series of pilot projects.

The tentative agreement with the unnamed oil and gas company kicks off the availability of the startup’s Black 2 Gold microbial technology. The technology underpins the startup’s biotech process for converting crude oil into proprietary Gold Hydrogen.

The cleantech startup plans to sign up several oil and gas companies for the pilot program. Gold H2 says it’s been in discussions with companies in North America, Latin America, India, Eastern Europe and the Middle East.

The pilot program is aimed at demonstrating how Gold H2’s technology can transform old oil wells into hydrogen-generating assets. Gold H2, a spinout of Houston-based biotech company Cemvita, says the technology is capable of producing hydrogen that’s cheaper and cleaner than ever before.

“This business model will reshape the traditional oil and gas industry landscape by further accelerating the clean energy transition and creating new economic opportunities in areas that were previously dismissed as unviable,” Gold H2 says in a news release.

The start of the Black 2 Gold demonstrations follows the recent hiring of oil and gas industry veteran Prabhdeep Singh Sekhon as CEO.

“With the proliferation of AI, growth of data centers, and a national boom in industrial manufacturing underway, affordable … carbon-free energy is more paramount than ever,” says Rayyan Islam, co-founder and general partner at venture capital firm 8090 Industries, an investor in Gold H2. “We’re investing in Gold H2, as we know they’ll play a pivotal role in unleashing a new dawn for energy abundance in partnership with the oil industry.”

------

This article originally ran on EnergyCapital.

3 Houston innovators to know this week

who's who

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes an e-commerce startup founder, an industrial biologist, and a cellular scientist.

Omair Tariq, co-founder and CEO of Cart.com

Omair Tariq of Cart.com joins the Houston Innovators Podcast to share his confidence in Houston as the right place to scale his unicorn. Photo via Cart.com

Houston-based Cart.com, which operates a multichannel commerce platform, has secured $105 million in debt refinancing from investment manager BlackRock.

The debt refinancing follows a recent $25 million series C extension round, bringing Cart.com’s series C total to $85 million. The scaleup’s valuation now stands at $1.2 billion, making it one of the few $1 billion-plus “unicorns” in the Houston area.

Cart.com was co-founded by CEO Omair Tariq in October 2020. Read more.

Nádia Skorupa Parachin, vice president of industrial biotechnology at Cemvita

Nádia Skorupa Parachin joined Cemvita as vice president of industrial biotechnology. Photo courtesy of Cemvita

Houston-based biotech company Cemvita recently tapped two executives to help commercialize its sustainable fuel made from carbon waste.

Nádia Skorupa Parachin came aboard as vice president of industrial biotechnology, and Phil Garcia was promoted to vice president of commercialization.

Parachin most recently oversaw several projects at Boston-based biotech company Ginkjo Bioworks. She previously co-founded Brazilian biotech startup Integra Bioprocessos. Read more.

Han Xiao, associate professor of chemistry at Rice University

The funds were awarded to Han Xiao, a chemist at Rice University.

A Rice University chemist has landed a $2 million grant from the National Institute of Health for his work that aims to reprogram the genetic code and explore the role certain cells play in causing diseases like cancer and neurological disorders.

The funds were awarded to Han Xiao, the Norman Hackerman-Welch Young Investigator, associate professor of chemistry, from the NIH's Maximizing Investigators’ Research Award (MIRA) program, which supports medically focused laboratories. Xiao will use the five-year grant to advance his work on noncanonical amino acids.

“This innovative approach could revolutionize how we understand and control cellular functions,” Xiao said in the statement. Read more.