Despite its high energy production, Texas has had more outages than any other state over the past five years due to the increasing frequency and severity of extreme weather events and rapidly growing demand. Photo via Getty Images

Texas stands out among other states when it comes to energy production.

Even after mass rolling blackouts during Winter Storm Uri in 2021, the Lone Star State produced more electricity than any other state in 2022. However, it also exemplifies how challenging it can be to ensure grid reliability. The following summer, the state’s grid manager, the Electrical Reliability Council of Texas (ERCOT), experienced ten occasions of record-breaking demand.

Despite its high energy production, Texas has had more outages than any other state over the past five years due to the increasing frequency and severity of extreme weather events and rapidly growing demand, as the outages caused by Hurricane Beryl demonstrated.

A bigger storm is brewing

Electric demand is poised to increase exponentially over the next few years. Grid planners nationwide are doubling their five-year load forecast. Texas predicts it will need to provide nearly double the amount of power within six years. These projections anticipate increasing demand from buildings, transportation, manufacturing, data centers, AI and electrification, underscoring the daunting challenges utilities face in maintaining grid reliability and managing rising demand.

However, Texas can accelerate its journey to becoming a grid reliability success story by taking two impactful steps. First, it could do more to encourage the adoption of distributed energy resources (DERs) like residential solar and battery storage to better balance the prodigious amounts of remote grid-scale renewables that have been deployed over the past decade. More DERs mean more local energy resources that can support the grid, especially local distribution circuits that are prone to storm-related outages. Second, by combining DERs with modern demand-side management programs and technology, utilities can access and leverage these additional resources to help them manage peak demand in real time and avoid blackout scenarios.

Near-term strategies and long-term priorities

Increasing electrical capacity with utility-scale renewable energy and storage projects and making necessary electrical infrastructure updates are critical to meet projected demand. However, these projects are complex, resource-intensive and take years to complete. The need for robust demand-side management is more urgent than ever.

Texas needs rapidly deployable solutions now. That’s where demand-side management comes in. This strategy enables grid operators to keep the lights on by lowering peak demand rather than burning more fossil fuels to meet it or, worse, shutting everything off.

Demand response, a demand-side management program, is vital in balancing the grid by lowering electricity demand through load control devices to ensure grid stability. Programs typically involve residential energy consumers volunteering to let the grid operator reduce their energy consumption at a planned time or when the grid is under peak load, typically in exchange for a credit on their energy bill. ERCOT, for example, implements demand responseand rate structure programs to reduce strain on the grid and plans to increase these strategies in the future, especially during the months when extreme weather events are more likely and demand is highest.

The primary solution for meeting peak demand and preventing blackouts is for the utility to turn on expensive, highly polluting, gas-powered “peaker” plants. Unfortunately, there’s a push to add more of these plants to the grid in anticipation of increasing demand. Instead of desperately burning fossil fuels, we should get more out of our existing infrastructure through demand-side management.

Optimizing existing infrastructure

The effectiveness of demand response programs depends in part on energy customers' participation. Despite the financial incentive, customers may be reluctant to participate because they don’t want to relinquish control over their AC. Grid operators also need timely energy usage data from responsive load control technology to plan and react to demand fluctuations. Traditional load control switches don’t provide these benefits.

However, intelligent residential load management technology like smart panels can modernize demand response programs and maximize their effectiveness with real-time data and unprecedented responsiveness. They can encourage customer participation with a less intrusive approach – unlocking the ability for the customer to choose from multiple appliances to enroll. They can also provide notifications for upcoming demand response events, allowing the customer to plan for the event or even opt-out by appliance. In addition to their demand response benefits, smart panels empower homeowners to optimize their home energy and unlock extended runtime for home batteries during a blackout.

Utilities and government should also encourage the adoption of distributed energy resources like rooftop solar and home batteries. These resources can be combined with residential load management technology to drastically increase the effectiveness of demand response programs, granting utilities more grid-stabilizing resources to prevent blackouts.

Solar and storage play a key role

During the ten demand records in the summer of 2023, batteries discharging in the evening helped avoid blackouts, while solar and wind generation covered more than a third of ERCOT's daytime load demand, preventing power price spikes.

Rooftop solar panels generate electricity that can be stored in battery backup systems, providing reliable energy during outages or peak demand. Smart panels extend the runtime of these batteries through automated energy optimization, ensuring critical loads are prioritized and managed efficiently.

Load management technology, like smart panels, enhances the effectiveness of DERs. In rolling blackouts, homeowners with battery storage can rely on smart panels to manage energy use, keeping essential appliances operational and extending stored energy usability. Smart panels allow utilities to effectively manage peak demand, enabling load flexibility and preventing grid overburdening. These technologies and an effective demand response strategy can help Texans optimize the existing energy capacity and infrastructure.

A more resilient energy future

Texas can turn its energy challenges into opportunities by embracing advanced energy management technologies and robust demand-side strategies. Smart panels and distributed energy resources like solar and battery storage offer a promising path to a resilient and efficient grid. As Texans navigate increasing electricity demands and extreme weather events, these innovations provide hope for a future where reliable energy is accessible to all, ensuring grid stability and enhancing the quality of life across the state.

------

Kelly Warner is the CEO of Lumin, a responsive energy management solutions company.

This article originally ran on EnergyCapital.
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Waymo self-driving robotaxis will launch in Houston in 2026

Coming Soon

Houston just cleared a major lane to the future. Waymo has announced the official launch of its self-driving robotaxi service in the Bayou City, beginning with employee-only operations this fall ahead of a public launch in early 2026.

The full rollout will include three Texas cities, Houston, Dallas, and San Antonio, along with Miami and Orlando, Florida. Currently, the company operates in the San Francisco Bay Area, Phoenix, and Los Angeles, with service available in Austin and Atlanta through Uber.

Before letting its technology loose on a city, Waymo first tests the routes with human drivers. Once each locale is mapped, the cars can begin driving independently. Unique situations are flagged by specialists, and engineers evaluate performance in virtual replicas of each city.

“Waymo’s quickly entering a number of new cities in the U.S. and around the world, and our approach to every new city is consistent,” explained the announcement. “We compare our driving performance against a proven baseline to validate the performance of the Waymo Driver and identify any unique local characteristics.”

The launch puts Waymo ahead of Tesla. Elon Musk’s Austin-based carmaker has made a lot of hullabaloo about autonomy being the future of the company, but has yet to launch its service on a wide scale.

Waymo started testing San Antonio’s roadways in May as part of a multi-city “road trip,” which also included Houston. The company says its measured approach to launches helps alleviate local concern over safety and other issues.

“The future of transportation is accelerating, and we are driving it forward with a commitment to quality and safety,” Waymo wrote. “Our rigorous process of continuous iteration, validation, and local engagement ensures that we put communities first as we expand.”

---

This article originally appeared on CultureMap.com.

Shipley Donuts launches AI-powered ordering assistant

fresh tech

Popular Houston-born doughnut chain Shipley Donuts has added a first-of-its-kind AI-powered assistant to its online ordering platform.

The new assistant can create personalized order recommendations based on individual or group preferences, according to a news release from the company. Unlike standard chatbox features, the new assistant makes custom recommendations based on multiple customer factors, including budgetary habits, individual flavor preferences and order size.

"We're not just adding AI for the sake of innovation — we're solving real customer pain points by making ordering more intuitive, personalized and efficient," Kerry Leo, Shipley Vice President of Technology, said in the release.

The system also works for larger events, as it can make individual orders and catering recommendations for corporate events and meetings by suggesting quantities and assortments based on group size, event type and budget.

According to Shipley, nearly 1 in 4 guests have completed orders with the new AI technology since it launched on its website.

“The integration of the AI ordering assistant into our refreshed website represents a significant leap forward in how restaurant brands can leverage technology to enhance the customer experience,” Leo added in the release.

Houston company wins AHA competition for pediatric heart valve design

winner, winner

Houston-based PolyVascular, which develops minimally invasive solutions for children with congenital heart disease, was named the overall winner of the American Heart Association’s annual Health Tech Competition earlier this month.

The company was founded in 2014 by Dr. Henri Justino and Daniel Harrington and was part of TMCi's 2017 medical device cohort. It is developing the first polymer-based transcatheter pulmonary valve designed specifically for young children, allowing for precise sizing and redilation as the child grows while also avoiding degradation. PolyVascular has completed preclinical studies and is working toward regulatory submissions, an early feasibility study and its first-in-human clinical trial thanks to a recent SBIR grant from the National Heart, Lung, and Blood Institute.

With the new AHA honor, PolyVascular will be invited to join the association’s Center for Health Technology & Innovation Innovators’ Network, which connects entrepreneurs, providers and researchers to share and advance innovation in cardiovascular and brain health.

“This is a tremendous honor for PolyVascular—we’re especially proud to bring hope to families and children living with congenital heart defects,” Justino said in a news release. “Our technology—a minimally invasive valve that can be expanded over time to grow with the child—has the potential to dramatically reduce the need for repeated open-heart surgeries.”

The Health Tech Competition is a live forum for health care innovators to present their digital solutions for treating or preventing cardiovascular diseases and stroke.

Finalists from around the world addressed heart failure, hypertension, congenital heart defects and other issues that exist in cardiovascular, brain and metabolic health. Solutions were evaluated on the criteria of validity, scientific rigor and impact.

The judges included Texas-based Dr. Eric D. Peterson, professor of medicine in the division of cardiology at UT Southwestern Medical Center, and Dr. Asif Ali, clinical associate professor of cardiovascular medicine at the University of Texas Medical School in Houston and director at Cena Research Institute.

According to the American Heart Association, nearly half of U.S. adults live with some form of cardiovascular disease or stroke.

“The American Heart Association plays a pivotal role in advancing innovative care pathways, and we’re excited that our solution aligns with its guidelines and mission,” Justino said in a news release. “It’s time these life-changing technologies reach the youngest patients, just as they already do for adults.”