Houston institutions have landed $6.25 million in NIH funding to launch the HAI-KUH research training program. Photo via UH.

Institutions within Houston’s Texas Medical Center have launched the Houston Area Incubator for Kidney, Urologic and Hematologic Research Training (HAI-KUH) program. The incubator will be backed by $6.25 million over five years from the National Institutes of Health and aims to create a training pipeline for researchers.

HAI-KUH will include 58 investigators from Baylor College of Medicine, Texas Children’s Hospital, the University of Texas Health Science Center at Houston, University of Houston, Houston Methodist Research Institute, MD Anderson Cancer Center, Rice University and Texas A&M University Institute of Biosciences and Technology. The program will fund six predoctoral students and six postdoctoral associates. Trainees will receive support in scientific research, professional development and networking.

According to the organizations, Houston has a high burden of kidney diseases, hypertension, sickle cell disease and other nonmalignant hematologic conditions. HAI-KUH will work to improve the health of patients by building a strong scientific workforce that leverages the team's biomedical research resources to develop research skills of students and trainees and prepare them for sustained and impactful careers. The funding comes through the National Institute of Diabetes and Digestive and Kidney Diseases.

The principal investigators of the project include Dr. Alison Bertuch, professor of pediatric oncology and molecular and human genetics at BCM; Peter Doris, professor and director of the Institute of Molecular Medicine Center for Human Genetics at UT Health; and Margaret Goodell, professor and chair of the Department of Molecular and Cellular Biology at Baylor.

“This new award provides unique collaborative training experiences that extend beyond the outstanding kidney, urology, and hematology research going on in the Texas Medical Center,” Doris said in a news release. “In conceiving this award, the National Institute of Diabetes and Digestive and Kidney Diseases envisioned trainee development across the full spectrum of skills required for professional success.”

Jeffrey Rimer, a professor of Chemical Engineering, is a core investigator on the project and program director at UH. Rimer is known for his breakthroughs in using innovative methods in control crystals to help treat malaria and kidney stones. Other co-investigators include Dr. Wolfgang Winkelmeyer (Baylor), Oleh Pochynyuk (UTHealth), Dr. Rose Khavari (Houston Methodist) and Pamela Wenzel (UT Health).

“This new NIH-sponsored training program will enable us to recruit talented students and postdocs to work on these challenging areas of research,” Rimer added in a release.

A new AI tool from a Baylor College of Medicine Lab could help better diagnose specific types of autism spectrum disorder, epilepsy and developmental delay disorders. Photo via Getty Images.

Houston lab develops AI tool to improve neurodevelopmental diagnoses

developing news

One of the hardest parts of any medical condition is waiting for answers. Speeding up an accurate diagnosis can be a doctor’s greatest mercy to a family. A team at Baylor College of Medicine has created technology that may do exactly that.

Led by Dr. Ryan S. Dhindsa, assistant professor of pathology and immunology at Baylor and principal investigator at the Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, the scientists have developed an artificial intelligence-based approach that will help doctors to identify genes tied to neurodevelopmental disorders. Their research was recently published the American Journal of Human Genetics.

According to its website, Dhindsa Lab uses “human genomics, human stem cell models, and computational biology to advance precision medicine.” The diagnoses that stem from the new computational tool could include specific types of autism spectrum disorder, epilepsy and developmental delay, disorders that often don’t come with a genetic diagnosis.

“Although researchers have made major strides identifying different genes associated with neurodevelopmental disorders, many patients with these conditions still do not receive a genetic diagnosis, indicating that there are many more genes waiting to be discovered,” Dhindsa said in a news release.

Typically, scientists must sequence the genes of many people with a diagnosis, as well as people not affected by the disorder, to find new genes associated with a particular disease or disorder. That takes time, money, and a little bit of luck. AI minimizes the need for all three, explains Dhindsa: “We used AI to find patterns among genes already linked to neurodevelopmental diseases and predict additional genes that might also be involved in these disorders.”

The models, made using patterns expressed at the single-cell level, are augmented with north of 300 additional biological features, including data on how intolerant genes are to mutations, whether they interact with other known disease-associated genes, and their functional roles in different biological pathways.

Dhindsa says that these models have exceptionally high predictive value.

“Top-ranked genes were up to two-fold or six-fold, depending on the mode of inheritance, more enriched for high-confidence neurodevelopmental disorder risk genes compared to genic intolerance metrics alone,” he said in the release. “Additionally, some top-ranking genes were 45 to 500 times more likely to be supported by the literature than lower-ranking genes.”

That means that the models may actually validate genes that haven’t yet been proven to be involved in neurodevelopmental conditions. Gene discovery done with the help of AI could possibly become the new normal for families seeking answers beyond umbrella terms like “autism spectrum disorder.”

“We hope that our models will accelerate gene discovery and patient diagnoses, and future studies will assess this possibility,” Dhindsa added.

Research from Baylor College of Medicine and the Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital will help develop targeted treatments for individuals with auditory disorders. Photo via Getty Images.

Houston scientists make breakthrough in hearing science and treatment research

sounds good

Researchers at Baylor College of Medicine and the Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital have successfully mapped which cell populations are responsible for processing different types of sounds.

Working with a team at the Oregon Health & Science University, the Houston scientists have classified where in the cochlear nucleus our brains connect with various sounds, including speech and music. The research was published in the new edition of Nature Communications.

“Understanding these cell types and how they function is essential in advancing treatments for auditory disorders,” Matthew McGinley, assistant professor of neuroscience at Baylor, said in a release. “Think of how muscle cells in the heart are responsible for contraction, while valve cells control blood flow. The auditory brainstem operates in a similar fashion — different cell types respond to distinct aspects of sound.”

Though scientists have long thought that there are distinct types of cells in the cochlear nucleus, they didn’t have tools to distinguish them until now.

Lead author on the study, Xiaolong Jiang, associate professor of neuroscience at Baylor, added: “This study not only confirms many of the cell types we anticipated, but it also unveils entirely new ones, challenging long-standing principles of hearing processing in the brain and offering fresh avenues for therapeutic exploration.”

Jiang and his team have cooked up a comprehensive cellular and molecular atlas of the cochlear nucleus, which will help them to create more targeted and more effective treatments for patients struggling with their hearing.

The strategies that aided them in creating these tools included single-nucleus RNA sequencing, which made it possible to define neuronal populations on a molecular level. Phenotypic categorizations of the cells were made possible with patch sequencing.

This is a watershed moment for the development of targeted treatments for individuals with auditory disorders, including those with impaired function in the auditory nerve, for whom cochlear implants don’t work.

“If we can understand what each cell type is responsible for, and with the identification of new subtypes of cells, doctors can potentially develop treatments that target specific cells with greater accuracy,” McGinley explains. “These findings, thanks to the work of our collaborative team, make a significant step forward in the field of auditory research and get us closer to a more personalized treatment for each patient.”

The University of Texas MD Anderson Cancer Center was recognized for advancements in electronic functionality, AI and robotics. Photo via mdanderson.org

Houston hospital named among smartest in the nation

hi, tech

Houston hospitals are chock-full of smart people. But they’re also equipped with lots of “smart” technology. In fact, five local hospitals appear on Newsweek’s new list of the world’s best “smart” hospitals.

To compile the list, Newsweek teamed up with data provider Statista to rank the world’s top 330 hospitals for the use of smart technology. The ranking factors were electronic functionality, telemedicine, digital imaging, artificial intelligence (AI), and robotics.

The highest-ranked Houston hospital is the University of Texas MD Anderson Cancer Center, appearing at No. 6. The hospital was recognized for advancements in electronic functionality, AI and robotics.

“MD Anderson has a significant opportunity and a responsibility to our many stakeholders to create a digital ecosystem that promotes collaboration and advances scientific discovery to enhance patient outcomes,” David Jaffray, the cancer center’s chief technology and digital officer, said in a 2021 news release.

“Through our ongoing focus on enabling the use of new technologies to place quantitative data in context for our researchers,” Jaffray added, “we foster cutting-edge oncology data science to inform our cancer discovery research and to accelerate translation of our research findings into benefits for cancer patients.”

Ahead of MD Anderson on the list are:

  1. Mayo Clinic in Rochester, Minnesota.
  2. Cleveland Clinic in Cleveland.
  3. Massachusetts General Hospital in Boston.
  4. Johns Hopkins Hospital in Baltimore.
  5. Mount Sinai Hospital in New York City.

Other Houston hospitals on the list are:

  • Houston Methodist Hospital, No. 11.
  • Baylor St. Luke’s Medical Center, No. 105.
  • Texas Children’s Hospital, No. 197.
  • Memorial Hermann-Texas Medical Center, No. 266.
CellChorus announced that the company, along with The University of Houston, has been awarded up to $2.5 million in funding. Photo via Getty Images

University of Houston-founded company secures $2.5M in NIH grant funding

all in the timing

You could say that the booming success of Houston biotech company CellChorus owes very much to auspicious TIMING. Those six letters stand for Time-lapse Imaging Microscopy In Nanowell Grids, a platform for dynamic single-cell analysis.

This week, CellChorus announced that the company, along with The University of Houston, has been awarded up to $2.5 million in funding from the National Center for Advancing Translational Sciences (NCATS) at the National Institute of Health. A $350,000 Phase I grant is already underway. Once predetermined milestones are achieved, this will lead to a two-year $2.1 million Phase II grant.

The TIMING platform was created by UH Single Cell Lab researchers Navin Varadarajan and Badri Roysam. TIMING generates high-throughput in-vitro assays that quantitatively profile interactions between cells on a large scale, particularly what happens when immune cells confront target cells. This has been especially useful in the realm of immuno-oncology, where it has demonstrated its power in designing novel therapies, selecting lead candidates for clinical trials and evaluating the potency of manufactured cells.

“By combining AI, microscale manufacturing and advanced microscopy, the TIMING platform yields deep insight into cellular behaviors that directly impact human disease and new classes of therapeutics,” says Rebecca Berdeaux, chief scientific officer at CellChorus. “The generous support of NCATS enables our development of computational tools that will ultimately integrate single-cell dynamic functional analysis of cell behavior with intracellular signaling events.”

Houston’s CellChorus Innovation Lab supports both the further development of TIMING and projects for early-access customers. Those customers include top-25 biopharmaceutical companies, venture-backed biotechnology companies, a leading comprehensive cancer center and a top pediatric hospital, says CEO Daniel Meyer.

CellChorus’s publications include papers written in collaboration with researchers from the Baylor College of Medicine, Houston Methodist, MD Anderson, Texas Children’s Hospital, the University of Texas and UTHealth in journals including Nature Cancer, Journal of Clinical Investigation and The Journal for ImmunoTherapy of Cancer.

The new Small Business Technology Transfer (STTR) award will specifically support the development of a scalable integrated software system conceived with the goal of analyzing cells that are not fluorescently labeled. This label-free analysis will be based on new AI and machine learning (ML) models trained on tens of millions of images of cells.

“This is an opportunity to leverage artificial intelligence methods for advancing the life sciences,” says Roysam. “We are especially excited about its applications to advancing cell-based immunotherapy to treat cancer and other diseases.”

The Houston-born-and-bred company couldn’t have a more appropriate home, says Meyer.

“Houston is a premier location for clinical care and the development of biotechnology and life sciences technologies. In particular, Houston has established itself as a leader in the development and delivery of immune cell-based therapies,” the CEO explains. “As a spin-out from the Single Cell Lab at the University of Houston, we benefit from working with world-class experts at local institutions.”

In May, the company received a similar $2.5 million SBIR grant from NCATS at the NIH. Also this summer, CellChorus's technology was featured in Nature Cancer.

Baylor College of Medicine's Jessica Watts, Dr. Jerome Pollet, and Dr. Paul Ling with Tess. Photo by Jackelin Reyna/Houston Zoo

Houston med school develops revolutionary mRNA vaccine for elephants

zoology biology

An innovative team from Baylor College of Medicine and Texas Children’s Hospital has worked with the Houston Zoo to develop a first-of-its-kind treatment for elephants, which has been administered to its first patient.

Tess, the beloved, 40-year-old matriarch of the Houston Zoo’s elephant herd, is recovering well after receiving the first-ever mRNA vaccine against elephant endotheliotropic herpesvirus (EEHV) 1A on Tuesday, June 18. The veterinary staff at the Houston Zoo will monitor Tess in the coming weeks to check her reaction and the efficacy of the vaccine.

EEHV 1A is a deadly infection for Asian Elephants. While generally benign in African Elephants, Asian Elephants can develop fatal hemorrhages. The fatality rate is a whopping 80 percent, making it one of the most serous threats to elephant populations outside of humans.

Anti-viral drugs have some effect on the disease, but two-thirds show no improvement. This has led to a search for a vaccine. For 15 years, the Houston Zoo and Dr. Paul Ling at Baylor College of Medicine’s Department of Virology and Microbiology have partnered to develop the drug. They have been helped by worldwide research from zoos and animal specialists, as well as graduate student Jessica Watts and Dr. Jeroen Pollet at Houston's Texas Children’s Hospital. The research has been funded by private donations, research partnerships, and grants.

Before being inoculated, the mRNA vaccine was exhaustively tested, with the dosage being extrapolated from data involving horses.

Houston Zoo veterinarians will periodically test Tess to see if she is developing the appropriate antibodies. If she is and there are no adverse reactions, the next step will be to administer the vaccine to the rest of the Houston herd. Many of these are Tess’s own children (Tucker, Tupelo, Tilly, and Teddy) and grandchildren (Winnie).

Should the vaccine prove effective, the doses will be made available worldwide to zoos and private elephant sanctuaries. It is likely to have a significant benefit on protecting and preserving the Asian Elephant population. As of January, there are fewer than 50,000 of the animas left in the wild. They are currently listed as endangered, and breeding programs and research done through the Houston Zoo are essential to keeping the animals from going extinct.

------

This article originally ran on CultureMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston energy trailblazer Fervo closes $462 million Series E

Fresh Funds

Houston-based geothermal energy company Fervo Energy has closed an oversubscribed $462 million series E funding round, led by new investor B Capital.

“Fervo is setting the pace for the next era of clean, affordable, and reliable power in the U.S.,” Jeff Johnson, general partner at B Capital, said in a news release.

“With surging demand from AI and electrification, the grid urgently needs scalable, always-on solutions, and we believe enhanced geothermal energy is uniquely positioned to deliver. We’re proud to support a team with the technical leadership, commercial traction, and leading execution capabilities to bring the world’s largest next-generation geothermal project online and make 24/7 carbon-free power a reality.”

The financing reflects “strong market confidence in Fervo’s opportunity to make geothermal energy a cornerstone of the 24/7 carbon-free power future,” according to the company. The round also included participation from Google, a longtime Fervo Partner, and other new and returning investors like Devon Energy, Mitsui & Co., Ltd., Mitsubishi Heavy Industries and Centaurus Capital. Centaurus Capital also recently committed $75 million in preferred equity to support the construction of Cape Station Phase I, Fervo noted in the release.

The latest funding will support the continued buildout of Fervo’s Utah-based Cape Station development, which is slated to start delivering 100 MW of clean power to the grid beginning in 2026. Cape Station is expected to be the world's largest next-generation geothermal development, according to Fervo. The development of several other projects will also be included in the new round of funding.

“This funding sharpens our path from breakthrough technology to large-scale deployment at Cape Station and beyond,” Tim Latimer, CEO and co-founder of Fervo, added in the news release. “We’re building the clean, firm power fleet the next decade requires, and we’re doing it now.”

Fervo recently won Scaleup of the Year at the 2025 Houston Innovation Awards, and previously raised $205.6 million in capital to help finance the Cape Station earlier this year. The company fully contracted the project's capacity with the addition of a major power purchase agreement from Shell this spring. Fervo’s valuation has been estimated at $1.4 billion and includes investments and support from Bill Gates.

“This new investment makes one thing clear: the time for geothermal is now,” Latimer added in a LinkedIn post. “The world desperately needs new power sources, and with geothermal, that power is clean and reliable. We are ready to meet the moment, and thrilled to have so many great partners on board.”

---

This article originally appeared on EnergyCapitalHTX.com.

Baylor center receives $10M NIH grant to continue rare disease research

NIH funding

Baylor College of Medicine’s Center for Precision Medicine Models received a $10 million, five-year grant from the National Institutes of Health last month that will allow it to continue its work studying rare genetic diseases.

The Center for Precision Medicine Models creates customized cell, fly and mouse models that mimic specific genetic variations found in patients, helping scientists to better understand how genetic changes cause disease and explore potential treatments.

The center was originally funded by an NIH grant, and its models have contributed to the discovery of several new rare disease genes and new symptoms caused by known disease genes. It hosts an online portal that allows physicians, families and advocacy groups to nominate genetic variants or rare diseases that need further investigation or new treatments.

Since its founding in 2020, it has received 156 disease/variant nominations, accepted 63 for modeling and produced more than 200 precision models, according to Baylor.

The center plans to use the latest round of funding to bring together more experts in rare disease research, animal modeling and bioinformatics, and to expand its focus and model more complex diseases.

Dr. Jason Heaney, associate professor in the Department of Molecular and Human Genetics at BCM, serves as the lead principal investigator of the center.

“The Department of Molecular and Human Genetics is uniquely equipped to bring together the diverse expertise needed to connect clinical human genetics, animal research and advanced bioinformatics tools,” Heaney added in the release. “This integration allows us to drive personalized medicine forward using precision animal models and to turn those discoveries into better care for patients.”

Houston institutions launch Project Metis to position region as global leader in brain health

brain trust

Leaders in Houston's health care and innovation sectors have joined the Center for Houston’s Future to launch an initiative that aims to make the Greater Houston Area "the global leader of brain health."

The multi-year Project Metis, named after the Greek goddess of wisdom and deep thought, will be led by the newly formed Rice Brain Institute, The University of Texas Medical Branch's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department. The initiative comes on the heels of Texas voters overwhelmingly approving a ballot measure to launch the $3 billion, state-funded Dementia Prevention and Research Institute of Texas (DPRIT).

According to organizers, initial plans for Project Metis include:

  • Creating working teams focused on brain health across all life stages, science and medical advances, and innovation and commercialization
  • Developing a regional Brain Health Index to track progress and equity
  • Implanting pilot projects in areas such as clinical care, education and workplace wellness
  • Sharing Houston’s progress and learnings at major international forums, including Davos and the UN General Assembly

The initiative will be chaired by:

  • Founding Chair: Dr. Jochen Reiser, President of UTMB and CEO of the UTMB Health System
  • Project Chair: Amy Dittmar, Howard R. Hughes Provost and Executive Vice President of Rice University
  • Project Chair: Dr. David L. Callender, President and CEO of Memorial Hermann Health System

The leaders will work with David Gow, Center for Houston’s Future president and CEO. Gow is the founder and chairman of Gow Media, InnovationMap's parent company.

“Now is exactly the right time for Project Metis and the Houston-Galveston Region is exactly the right place,” Gow said in a news release. “Texas voters, by approving the state-funded Dementia Prevention Institute, have shown a strong commitment to brain health, as scientific advances continue daily. The initiative aims to harness the Houston’s regions unique strengths: its concentration of leading medical and academic institutions, a vibrant innovation ecosystem, and a history of entrepreneurial leadership in health and life sciences.”

Lime Rock Resources, BP and The University of Texas MD Anderson Cancer Center served as early steering members for Project Metis. HKS, Houston Methodist and the American Psychiatric Association Foundation have also supported the project.

An estimated 460,000 Texans are living with dementia, according to the Alzheimer’s Association, and more than one million caregivers support them.

“Through our work, we see both the immense human toll of brain-related illness and the tremendous potential of early intervention, coordinated care and long-term prevention," Callender added in the release. "That’s why this bold new initiative matters so much."