A new AI tool from a Baylor College of Medicine Lab could help better diagnose specific types of autism spectrum disorder, epilepsy and developmental delay disorders. Photo via Getty Images.

One of the hardest parts of any medical condition is waiting for answers. Speeding up an accurate diagnosis can be a doctor’s greatest mercy to a family. A team at Baylor College of Medicine has created technology that may do exactly that.

Led by Dr. Ryan S. Dhindsa, assistant professor of pathology and immunology at Baylor and principal investigator at the Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, the scientists have developed an artificial intelligence-based approach that will help doctors to identify genes tied to neurodevelopmental disorders. Their research was recently published the American Journal of Human Genetics.

According to its website, Dhindsa Lab uses “human genomics, human stem cell models, and computational biology to advance precision medicine.” The diagnoses that stem from the new computational tool could include specific types of autism spectrum disorder, epilepsy and developmental delay, disorders that often don’t come with a genetic diagnosis.

“Although researchers have made major strides identifying different genes associated with neurodevelopmental disorders, many patients with these conditions still do not receive a genetic diagnosis, indicating that there are many more genes waiting to be discovered,” Dhindsa said in a news release.

Typically, scientists must sequence the genes of many people with a diagnosis, as well as people not affected by the disorder, to find new genes associated with a particular disease or disorder. That takes time, money, and a little bit of luck. AI minimizes the need for all three, explains Dhindsa: “We used AI to find patterns among genes already linked to neurodevelopmental diseases and predict additional genes that might also be involved in these disorders.”

The models, made using patterns expressed at the single-cell level, are augmented with north of 300 additional biological features, including data on how intolerant genes are to mutations, whether they interact with other known disease-associated genes, and their functional roles in different biological pathways.

Dhindsa says that these models have exceptionally high predictive value.

“Top-ranked genes were up to two-fold or six-fold, depending on the mode of inheritance, more enriched for high-confidence neurodevelopmental disorder risk genes compared to genic intolerance metrics alone,” he said in the release. “Additionally, some top-ranking genes were 45 to 500 times more likely to be supported by the literature than lower-ranking genes.”

That means that the models may actually validate genes that haven’t yet been proven to be involved in neurodevelopmental conditions. Gene discovery done with the help of AI could possibly become the new normal for families seeking answers beyond umbrella terms like “autism spectrum disorder.”

“We hope that our models will accelerate gene discovery and patient diagnoses, and future studies will assess this possibility,” Dhindsa added.

Research from Baylor College of Medicine and the Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital will help develop targeted treatments for individuals with auditory disorders. Photo via Getty Images.

Houston scientists make breakthrough in hearing science and treatment research

sounds good

Researchers at Baylor College of Medicine and the Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital have successfully mapped which cell populations are responsible for processing different types of sounds.

Working with a team at the Oregon Health & Science University, the Houston scientists have classified where in the cochlear nucleus our brains connect with various sounds, including speech and music. The research was published in the new edition of Nature Communications.

“Understanding these cell types and how they function is essential in advancing treatments for auditory disorders,” Matthew McGinley, assistant professor of neuroscience at Baylor, said in a release. “Think of how muscle cells in the heart are responsible for contraction, while valve cells control blood flow. The auditory brainstem operates in a similar fashion — different cell types respond to distinct aspects of sound.”

Though scientists have long thought that there are distinct types of cells in the cochlear nucleus, they didn’t have tools to distinguish them until now.

Lead author on the study, Xiaolong Jiang, associate professor of neuroscience at Baylor, added: “This study not only confirms many of the cell types we anticipated, but it also unveils entirely new ones, challenging long-standing principles of hearing processing in the brain and offering fresh avenues for therapeutic exploration.”

Jiang and his team have cooked up a comprehensive cellular and molecular atlas of the cochlear nucleus, which will help them to create more targeted and more effective treatments for patients struggling with their hearing.

The strategies that aided them in creating these tools included single-nucleus RNA sequencing, which made it possible to define neuronal populations on a molecular level. Phenotypic categorizations of the cells were made possible with patch sequencing.

This is a watershed moment for the development of targeted treatments for individuals with auditory disorders, including those with impaired function in the auditory nerve, for whom cochlear implants don’t work.

“If we can understand what each cell type is responsible for, and with the identification of new subtypes of cells, doctors can potentially develop treatments that target specific cells with greater accuracy,” McGinley explains. “These findings, thanks to the work of our collaborative team, make a significant step forward in the field of auditory research and get us closer to a more personalized treatment for each patient.”

The University of Texas MD Anderson Cancer Center was recognized for advancements in electronic functionality, AI and robotics. Photo via mdanderson.org

Houston hospital named among smartest in the nation

hi, tech

Houston hospitals are chock-full of smart people. But they’re also equipped with lots of “smart” technology. In fact, five local hospitals appear on Newsweek’s new list of the world’s best “smart” hospitals.

To compile the list, Newsweek teamed up with data provider Statista to rank the world’s top 330 hospitals for the use of smart technology. The ranking factors were electronic functionality, telemedicine, digital imaging, artificial intelligence (AI), and robotics.

The highest-ranked Houston hospital is the University of Texas MD Anderson Cancer Center, appearing at No. 6. The hospital was recognized for advancements in electronic functionality, AI and robotics.

“MD Anderson has a significant opportunity and a responsibility to our many stakeholders to create a digital ecosystem that promotes collaboration and advances scientific discovery to enhance patient outcomes,” David Jaffray, the cancer center’s chief technology and digital officer, said in a 2021 news release.

“Through our ongoing focus on enabling the use of new technologies to place quantitative data in context for our researchers,” Jaffray added, “we foster cutting-edge oncology data science to inform our cancer discovery research and to accelerate translation of our research findings into benefits for cancer patients.”

Ahead of MD Anderson on the list are:

  1. Mayo Clinic in Rochester, Minnesota.
  2. Cleveland Clinic in Cleveland.
  3. Massachusetts General Hospital in Boston.
  4. Johns Hopkins Hospital in Baltimore.
  5. Mount Sinai Hospital in New York City.

Other Houston hospitals on the list are:

  • Houston Methodist Hospital, No. 11.
  • Baylor St. Luke’s Medical Center, No. 105.
  • Texas Children’s Hospital, No. 197.
  • Memorial Hermann-Texas Medical Center, No. 266.
CellChorus announced that the company, along with The University of Houston, has been awarded up to $2.5 million in funding. Photo via Getty Images

University of Houston-founded company secures $2.5M in NIH grant funding

all in the timing

You could say that the booming success of Houston biotech company CellChorus owes very much to auspicious TIMING. Those six letters stand for Time-lapse Imaging Microscopy In Nanowell Grids, a platform for dynamic single-cell analysis.

This week, CellChorus announced that the company, along with The University of Houston, has been awarded up to $2.5 million in funding from the National Center for Advancing Translational Sciences (NCATS) at the National Institute of Health. A $350,000 Phase I grant is already underway. Once predetermined milestones are achieved, this will lead to a two-year $2.1 million Phase II grant.

The TIMING platform was created by UH Single Cell Lab researchers Navin Varadarajan and Badri Roysam. TIMING generates high-throughput in-vitro assays that quantitatively profile interactions between cells on a large scale, particularly what happens when immune cells confront target cells. This has been especially useful in the realm of immuno-oncology, where it has demonstrated its power in designing novel therapies, selecting lead candidates for clinical trials and evaluating the potency of manufactured cells.

“By combining AI, microscale manufacturing and advanced microscopy, the TIMING platform yields deep insight into cellular behaviors that directly impact human disease and new classes of therapeutics,” says Rebecca Berdeaux, chief scientific officer at CellChorus. “The generous support of NCATS enables our development of computational tools that will ultimately integrate single-cell dynamic functional analysis of cell behavior with intracellular signaling events.”

Houston’s CellChorus Innovation Lab supports both the further development of TIMING and projects for early-access customers. Those customers include top-25 biopharmaceutical companies, venture-backed biotechnology companies, a leading comprehensive cancer center and a top pediatric hospital, says CEO Daniel Meyer.

CellChorus’s publications include papers written in collaboration with researchers from the Baylor College of Medicine, Houston Methodist, MD Anderson, Texas Children’s Hospital, the University of Texas and UTHealth in journals including Nature Cancer, Journal of Clinical Investigation and The Journal for ImmunoTherapy of Cancer.

The new Small Business Technology Transfer (STTR) award will specifically support the development of a scalable integrated software system conceived with the goal of analyzing cells that are not fluorescently labeled. This label-free analysis will be based on new AI and machine learning (ML) models trained on tens of millions of images of cells.

“This is an opportunity to leverage artificial intelligence methods for advancing the life sciences,” says Roysam. “We are especially excited about its applications to advancing cell-based immunotherapy to treat cancer and other diseases.”

The Houston-born-and-bred company couldn’t have a more appropriate home, says Meyer.

“Houston is a premier location for clinical care and the development of biotechnology and life sciences technologies. In particular, Houston has established itself as a leader in the development and delivery of immune cell-based therapies,” the CEO explains. “As a spin-out from the Single Cell Lab at the University of Houston, we benefit from working with world-class experts at local institutions.”

In May, the company received a similar $2.5 million SBIR grant from NCATS at the NIH. Also this summer, CellChorus's technology was featured in Nature Cancer.

Baylor College of Medicine's Jessica Watts, Dr. Jerome Pollet, and Dr. Paul Ling with Tess. Photo by Jackelin Reyna/Houston Zoo

Houston med school develops revolutionary mRNA vaccine for elephants

zoology biology

An innovative team from Baylor College of Medicine and Texas Children’s Hospital has worked with the Houston Zoo to develop a first-of-its-kind treatment for elephants, which has been administered to its first patient.

Tess, the beloved, 40-year-old matriarch of the Houston Zoo’s elephant herd, is recovering well after receiving the first-ever mRNA vaccine against elephant endotheliotropic herpesvirus (EEHV) 1A on Tuesday, June 18. The veterinary staff at the Houston Zoo will monitor Tess in the coming weeks to check her reaction and the efficacy of the vaccine.

EEHV 1A is a deadly infection for Asian Elephants. While generally benign in African Elephants, Asian Elephants can develop fatal hemorrhages. The fatality rate is a whopping 80 percent, making it one of the most serous threats to elephant populations outside of humans.

Anti-viral drugs have some effect on the disease, but two-thirds show no improvement. This has led to a search for a vaccine. For 15 years, the Houston Zoo and Dr. Paul Ling at Baylor College of Medicine’s Department of Virology and Microbiology have partnered to develop the drug. They have been helped by worldwide research from zoos and animal specialists, as well as graduate student Jessica Watts and Dr. Jeroen Pollet at Houston's Texas Children’s Hospital. The research has been funded by private donations, research partnerships, and grants.

Before being inoculated, the mRNA vaccine was exhaustively tested, with the dosage being extrapolated from data involving horses.

Houston Zoo veterinarians will periodically test Tess to see if she is developing the appropriate antibodies. If she is and there are no adverse reactions, the next step will be to administer the vaccine to the rest of the Houston herd. Many of these are Tess’s own children (Tucker, Tupelo, Tilly, and Teddy) and grandchildren (Winnie).

Should the vaccine prove effective, the doses will be made available worldwide to zoos and private elephant sanctuaries. It is likely to have a significant benefit on protecting and preserving the Asian Elephant population. As of January, there are fewer than 50,000 of the animas left in the wild. They are currently listed as endangered, and breeding programs and research done through the Houston Zoo are essential to keeping the animals from going extinct.

------

This article originally ran on CultureMap.

This uniquely Houston technology is an AI program that allows scientists to understand the functions of cells by evaluating cell activation, killing, and movement. Photo via Getty Images

University of Houston lab reports breakthrough in cancer-detecting technology

making moves

T-cell immunotherapy is all the rage in the world of fighting cancer. A Houston company’s researchers have discovered a new subset of T cells that could be a game changer for patients.

CellChorus is a spinoff of Navin Varadarajan’s Single Cell Lab, part of the University of Houston’s Technology Bridge. The lab is the creator of TIMING, or Time-lapse Imaging Microscopy In Nanowell Grids. It’s a visual AI program that allows scientists to understand the functions of cells by evaluating cell activation, killing, and movement.

Last month, Nature Cancer published a paper co-authored by Varadarajan entitled, “Identification of a clinically efficacious CAR T cell subset in diffuse large B cell lymphoma by dynamic multidimensional single-cell profiling.”

“Our results showed that a subset of T cells, labeled as CD8-fit T cells, are capable of high motility and serial killing, found uniquely in patients with clinical response,” says first author and recent UH graduate Ali Rezvan in Nature Cancer.

Besides him and Varadarajan, contributors hail from Baylor College of Medicine/Texas Children’s Hospital, MD Anderson Cancer Center, Kite Pharma, and CellChorus itself.

The team identified the CD80-fit T cells using TIMING to examine interactions between T cells and tumor cells across thousands of individual cells. They were able to integrate the results using single-cell RNA sequencing data.

T-cell therapy activates a patient’s own immune system to fight cancer cells, but not every patient responds favorably to it. Identifying CD8-fit cells could be the key to manufacturing clinical response even in those for whom immunotherapy hasn’t been effective.

“This work illustrates the excellence of graduate students Ali Rezvan and Melisa Montalvo; and post-doctoral researchers Melisa Martinez-Paniagua and Irfan Bandey among others,” says Varadarajan in a statement.

Earlier last month, CellChorus recently received a $2.5 million SBIR grant. The money allows the company to share TIMING more widely, facilitating even more landmark discoveries like CD8-fit cells.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

9 can't-miss Houston business and innovation events for April

where to be

Two new conferences will launch while another longtime business competition celebrates its 25th anniversary this month in Houston. Plus, there are networking opportunities, family tech events and more.

Here are the Houston business and innovation events you can't miss in April and how to register. Please note: this article might be updated to add more events.

​Ion Block Party: Art Crawl

Network and socialize with other tech enthusiasts and business-minded individuals while taking in the new gallery at Community Artists’ Collective and experiencing the immersive dome at Omnispace360. See work by Joel Zika, who will showcase his digital sculptures through augmented reality screens, and other public art around the Ion while also enjoying food and drink.

This event is Thursday, April 3, from 4-7 p.m. at the Ion. Click here to register.

​CLA Presents: Raising Capital over Happy Hour

Gain a better understanding of the capital-raising process and various funding opportunities at this educational happy hour. Keith Davidson, the market leader for CLA in Dallas and former CFO of ICS, will present.

This event is Thursday, April 10, from 4-6 p.m. at The Cannon. Click here to register.

Rice Business Plan Competition 

The Rice Alliance for Technology and Entrepreneurship will host the 25th annual Rice Business Plan Competition this month. Forty-two student-led teams from around the world, including one team from Rice, will present their plans before more than 300 angel, venture capital, and corporate investors to compete for more than $1 million in prizes.

This event is April 10-12. Stream the Elevator Pitch Competition and Final Round here.

RSVF Annual Conference

The Rice Student Venture Fund will host its first-ever Annual Conference to celebrate the university's entrepreneurial spirit and the rising generation of student-led innovation. The conference will include live startup demos, an RSVF fund update, a keynote fireside chat, a builder-investor panel and networking. RSVF welcomes students, alumni, investors, faculty and staff, and innovators and community members of the broader tech scene.

This event is Monday, April 14, from 4-8 p.m. at the Ion. Click here to register.

​TEX-E Conference

TEX-E will host its inaugural conference this month under the theme "Energy & Entrepreneurship: Navigating the Future of Climate Tech." The half-day conference will feature a keynote from Artemis Energy Partners CEO Bobby Tudor as well as panels with other energy and tech leaders from NRG, Microsoft, GE Vernova and TEB Tech.

This event is Tuesday, April 15, from 1-4:30 p.m. at the Ion. Click here to register.

Houston Methodist Leadership Speaker Series 

Hear from Dr. Jonathan Rogg, Chief Quality Officer and Vice President of Operations at Houston Methodist Hospital and a a practicing emergency medicine physician, at the latest Houston Methodist Leadership Speaker Series. Rogg will present "Leadership from the Bedside to the Boardroom."

This event is on Wednesday, April 23, from 4:45-6 p.m. at the Ion. Click here to register.

Ion Family STEAM Day– Let's Build a Tripwire Alarm

STEAM on Demand will host a hands-on, family-friendly engineering lesson for young ones on the Ion Forum Stairs. Kids will learn to create and test their own working alarm system. The event is geared toward those ages 7 to 14.

This event is Sunday, April 26, from 10 a.m. to noon at the Ion. Click here to register.

 Greentown Houston Fourth Anniversary Transition On Tap

Climatetech incubator Greentown Labs will celebrate its fourth anniversary with a special edition of its signature networking event, Transition On Tap. Entrepreneurs, investors, students, and friends of climatetech are invited to attend.

This event is Tuesday, April 29, from 5:30-7:30 p.m. at Greentown Labs. Click here to register.

Integrate Space Technology Into Your Small Biz

The SBA Houston District Office and the UH Technology Bridge will host a collaborative event designed to help small businesses leverage space technology for prototype development. Attendees will also hear from industry experts on resources and gain access free technical engineering assistance to help accelerate their businesses.

This event is Wednesday, April 30, from 9:30-11:30 a.m. at UH Technology Bridge Innovation Center. Click here to reserve your spot.

Texas university's innovative 'WaterHub' will dramatically reduce usage by 40%

Sustainable Move

A major advancement in sustainability is coming to one Texas university. A new UT WaterHub at the University of Texas at Austin will be the largest facility of its kind in the U.S. and will transform how the university manages its water resources.

It's designed to work with natural processes instead of against them for water savings of an estimated 40 percent. It's slated for completion in late 2027.

The university has had an active water recovery program since the 1980s. Still, water is becoming an increasing concern in Austin. According to Texas Living Waters, a coalition of conservation groups, Texas loses enough water annually to fill Lady Bird Lake roughly 89 times over.

As Austin continues to expand and face water shortages, the region's water supply faces increased pressure. The UT WaterHub plans to address this challenge by recycling water for campus energy operations, helping preserve water resources for both the university and local communities.

The 9,600-square-foot water treatment facility will use an innovative filtration approach. To reduce reliance on expensive machinery and chemicals, the system uses plants to naturally filter water and gravity to pull it in the direction it needs to go. Used water will be gathered from a new collection point near the Darrell K Royal Texas Memorial Stadium and transported to the WaterHub, located in the heart of the engineering district. The facility's design includes a greenhouse viewable to the public, serving as an interactive learning space.

Beyond water conservation, the facility is designed to protect the university against extreme weather events like winter storms. This new initiative will create a reliable backup water supply while decreasing university water usage, and will even reduce wastewater sent to the city by up to 70 percent.

H2O Innovation, UT’s collaborator in this project, specializes in water solutions, helping organizations manage their water efficiently.

"By combining cutting-edge technology with our innovative financing approach, we’re making it easier for organizations to adopt sustainable water practices that benefit both their bottom line and the environment, paving a step forward in water positivity,” said H2O Innovation president and CEO Frédéric Dugré in a press release.

The university expects significant cost savings with this project, since it won't have to spend as much on buying water from the city or paying fees to dispose of used water. Over the next several years, this could add up to millions of dollars.

---

A version of this story originally appeared on our sister site, CultureMap Austin.

Texas female-founded companies raised more than $1 billion in 2024, VC data shows

by the numbers

Female-founded companies in Dallas-Fort Worth may rack up more funding deals and more money than those in Houston. However, Bayou City beats DFW in one key category — but just barely.

Data from PitchBook shows that in the past 16 years, female-founded companies in DFW collected $2.7 billion across 488 deals. By comparison, female-founded companies in the Houston area picked up $1.9 billion in VC through 343 deals.

Yet if you do a little math, you find that Houston ekes out an edge over DFW in per-deal values. During the period covered by the PitchBook data, the value of each of the DFW deals averaged $5.53 million. But at $5,54 million, Houston was just $6,572 ahead of DFW for average deal value.

Not surprisingly, the Austin area clobbered Houston and DFW.

During the period covered by the PitchBook data, female-founded companies in the Austin area hauled in $7.5 billion across 1,114 deals. The average value of an Austin deal: more than $6.7 million.

Historically, funding for female-established companies has lagged behind funding for male-established companies. In 2024, female-founded companies accounted for about one-fourth of all VC deals in the U.S., according to PitchBook.

PitchBook noted that in 2024, female-founded companies raised $38.8 billion, up 27 percent from the previous year, but deal count dropped 13.1 percent, meaning more VC for fewer startups. In Texas, female-founded companies brought in $1.3 billion last year via 151 deals. The total raised is the same as 2023, when Texas female founders got $1.3 billion in capital across 190 deals.

“The VC industry is still trying to find solid footing after its peak in 2021. While some progress was made for female founders in 2024, particularly in exit activity, female founders and investors still face an uphill climb,” says Annemarie Donegan, senior research analyst at PitchBook.