Houston institutions have landed $6.25 million in NIH funding to launch the HAI-KUH research training program. Photo via UH.

Institutions within Houston’s Texas Medical Center have launched the Houston Area Incubator for Kidney, Urologic and Hematologic Research Training (HAI-KUH) program. The incubator will be backed by $6.25 million over five years from the National Institutes of Health and aims to create a training pipeline for researchers.

HAI-KUH will include 58 investigators from Baylor College of Medicine, Texas Children’s Hospital, the University of Texas Health Science Center at Houston, University of Houston, Houston Methodist Research Institute, MD Anderson Cancer Center, Rice University and Texas A&M University Institute of Biosciences and Technology. The program will fund six predoctoral students and six postdoctoral associates. Trainees will receive support in scientific research, professional development and networking.

According to the organizations, Houston has a high burden of kidney diseases, hypertension, sickle cell disease and other nonmalignant hematologic conditions. HAI-KUH will work to improve the health of patients by building a strong scientific workforce that leverages the team's biomedical research resources to develop research skills of students and trainees and prepare them for sustained and impactful careers. The funding comes through the National Institute of Diabetes and Digestive and Kidney Diseases.

The principal investigators of the project include Dr. Alison Bertuch, professor of pediatric oncology and molecular and human genetics at BCM; Peter Doris, professor and director of the Institute of Molecular Medicine Center for Human Genetics at UT Health; and Margaret Goodell, professor and chair of the Department of Molecular and Cellular Biology at Baylor.

“This new award provides unique collaborative training experiences that extend beyond the outstanding kidney, urology, and hematology research going on in the Texas Medical Center,” Doris said in a news release. “In conceiving this award, the National Institute of Diabetes and Digestive and Kidney Diseases envisioned trainee development across the full spectrum of skills required for professional success.”

Jeffrey Rimer, a professor of Chemical Engineering, is a core investigator on the project and program director at UH. Rimer is known for his breakthroughs in using innovative methods in control crystals to help treat malaria and kidney stones. Other co-investigators include Dr. Wolfgang Winkelmeyer (Baylor), Oleh Pochynyuk (UTHealth), Dr. Rose Khavari (Houston Methodist) and Pamela Wenzel (UT Health).

“This new NIH-sponsored training program will enable us to recruit talented students and postdocs to work on these challenging areas of research,” Rimer added in a release.

A new AI tool from a Baylor College of Medicine Lab could help better diagnose specific types of autism spectrum disorder, epilepsy and developmental delay disorders. Photo via Getty Images.

Houston lab develops AI tool to improve neurodevelopmental diagnoses

developing news

One of the hardest parts of any medical condition is waiting for answers. Speeding up an accurate diagnosis can be a doctor’s greatest mercy to a family. A team at Baylor College of Medicine has created technology that may do exactly that.

Led by Dr. Ryan S. Dhindsa, assistant professor of pathology and immunology at Baylor and principal investigator at the Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, the scientists have developed an artificial intelligence-based approach that will help doctors to identify genes tied to neurodevelopmental disorders. Their research was recently published the American Journal of Human Genetics.

According to its website, Dhindsa Lab uses “human genomics, human stem cell models, and computational biology to advance precision medicine.” The diagnoses that stem from the new computational tool could include specific types of autism spectrum disorder, epilepsy and developmental delay, disorders that often don’t come with a genetic diagnosis.

“Although researchers have made major strides identifying different genes associated with neurodevelopmental disorders, many patients with these conditions still do not receive a genetic diagnosis, indicating that there are many more genes waiting to be discovered,” Dhindsa said in a news release.

Typically, scientists must sequence the genes of many people with a diagnosis, as well as people not affected by the disorder, to find new genes associated with a particular disease or disorder. That takes time, money, and a little bit of luck. AI minimizes the need for all three, explains Dhindsa: “We used AI to find patterns among genes already linked to neurodevelopmental diseases and predict additional genes that might also be involved in these disorders.”

The models, made using patterns expressed at the single-cell level, are augmented with north of 300 additional biological features, including data on how intolerant genes are to mutations, whether they interact with other known disease-associated genes, and their functional roles in different biological pathways.

Dhindsa says that these models have exceptionally high predictive value.

“Top-ranked genes were up to two-fold or six-fold, depending on the mode of inheritance, more enriched for high-confidence neurodevelopmental disorder risk genes compared to genic intolerance metrics alone,” he said in the release. “Additionally, some top-ranking genes were 45 to 500 times more likely to be supported by the literature than lower-ranking genes.”

That means that the models may actually validate genes that haven’t yet been proven to be involved in neurodevelopmental conditions. Gene discovery done with the help of AI could possibly become the new normal for families seeking answers beyond umbrella terms like “autism spectrum disorder.”

“We hope that our models will accelerate gene discovery and patient diagnoses, and future studies will assess this possibility,” Dhindsa added.

Research from Baylor College of Medicine and the Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital will help develop targeted treatments for individuals with auditory disorders. Photo via Getty Images.

Houston scientists make breakthrough in hearing science and treatment research

sounds good

Researchers at Baylor College of Medicine and the Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital have successfully mapped which cell populations are responsible for processing different types of sounds.

Working with a team at the Oregon Health & Science University, the Houston scientists have classified where in the cochlear nucleus our brains connect with various sounds, including speech and music. The research was published in the new edition of Nature Communications.

“Understanding these cell types and how they function is essential in advancing treatments for auditory disorders,” Matthew McGinley, assistant professor of neuroscience at Baylor, said in a release. “Think of how muscle cells in the heart are responsible for contraction, while valve cells control blood flow. The auditory brainstem operates in a similar fashion — different cell types respond to distinct aspects of sound.”

Though scientists have long thought that there are distinct types of cells in the cochlear nucleus, they didn’t have tools to distinguish them until now.

Lead author on the study, Xiaolong Jiang, associate professor of neuroscience at Baylor, added: “This study not only confirms many of the cell types we anticipated, but it also unveils entirely new ones, challenging long-standing principles of hearing processing in the brain and offering fresh avenues for therapeutic exploration.”

Jiang and his team have cooked up a comprehensive cellular and molecular atlas of the cochlear nucleus, which will help them to create more targeted and more effective treatments for patients struggling with their hearing.

The strategies that aided them in creating these tools included single-nucleus RNA sequencing, which made it possible to define neuronal populations on a molecular level. Phenotypic categorizations of the cells were made possible with patch sequencing.

This is a watershed moment for the development of targeted treatments for individuals with auditory disorders, including those with impaired function in the auditory nerve, for whom cochlear implants don’t work.

“If we can understand what each cell type is responsible for, and with the identification of new subtypes of cells, doctors can potentially develop treatments that target specific cells with greater accuracy,” McGinley explains. “These findings, thanks to the work of our collaborative team, make a significant step forward in the field of auditory research and get us closer to a more personalized treatment for each patient.”

The University of Texas MD Anderson Cancer Center was recognized for advancements in electronic functionality, AI and robotics. Photo via mdanderson.org

Houston hospital named among smartest in the nation

hi, tech

Houston hospitals are chock-full of smart people. But they’re also equipped with lots of “smart” technology. In fact, five local hospitals appear on Newsweek’s new list of the world’s best “smart” hospitals.

To compile the list, Newsweek teamed up with data provider Statista to rank the world’s top 330 hospitals for the use of smart technology. The ranking factors were electronic functionality, telemedicine, digital imaging, artificial intelligence (AI), and robotics.

The highest-ranked Houston hospital is the University of Texas MD Anderson Cancer Center, appearing at No. 6. The hospital was recognized for advancements in electronic functionality, AI and robotics.

“MD Anderson has a significant opportunity and a responsibility to our many stakeholders to create a digital ecosystem that promotes collaboration and advances scientific discovery to enhance patient outcomes,” David Jaffray, the cancer center’s chief technology and digital officer, said in a 2021 news release.

“Through our ongoing focus on enabling the use of new technologies to place quantitative data in context for our researchers,” Jaffray added, “we foster cutting-edge oncology data science to inform our cancer discovery research and to accelerate translation of our research findings into benefits for cancer patients.”

Ahead of MD Anderson on the list are:

  1. Mayo Clinic in Rochester, Minnesota.
  2. Cleveland Clinic in Cleveland.
  3. Massachusetts General Hospital in Boston.
  4. Johns Hopkins Hospital in Baltimore.
  5. Mount Sinai Hospital in New York City.

Other Houston hospitals on the list are:

  • Houston Methodist Hospital, No. 11.
  • Baylor St. Luke’s Medical Center, No. 105.
  • Texas Children’s Hospital, No. 197.
  • Memorial Hermann-Texas Medical Center, No. 266.
CellChorus announced that the company, along with The University of Houston, has been awarded up to $2.5 million in funding. Photo via Getty Images

University of Houston-founded company secures $2.5M in NIH grant funding

all in the timing

You could say that the booming success of Houston biotech company CellChorus owes very much to auspicious TIMING. Those six letters stand for Time-lapse Imaging Microscopy In Nanowell Grids, a platform for dynamic single-cell analysis.

This week, CellChorus announced that the company, along with The University of Houston, has been awarded up to $2.5 million in funding from the National Center for Advancing Translational Sciences (NCATS) at the National Institute of Health. A $350,000 Phase I grant is already underway. Once predetermined milestones are achieved, this will lead to a two-year $2.1 million Phase II grant.

The TIMING platform was created by UH Single Cell Lab researchers Navin Varadarajan and Badri Roysam. TIMING generates high-throughput in-vitro assays that quantitatively profile interactions between cells on a large scale, particularly what happens when immune cells confront target cells. This has been especially useful in the realm of immuno-oncology, where it has demonstrated its power in designing novel therapies, selecting lead candidates for clinical trials and evaluating the potency of manufactured cells.

“By combining AI, microscale manufacturing and advanced microscopy, the TIMING platform yields deep insight into cellular behaviors that directly impact human disease and new classes of therapeutics,” says Rebecca Berdeaux, chief scientific officer at CellChorus. “The generous support of NCATS enables our development of computational tools that will ultimately integrate single-cell dynamic functional analysis of cell behavior with intracellular signaling events.”

Houston’s CellChorus Innovation Lab supports both the further development of TIMING and projects for early-access customers. Those customers include top-25 biopharmaceutical companies, venture-backed biotechnology companies, a leading comprehensive cancer center and a top pediatric hospital, says CEO Daniel Meyer.

CellChorus’s publications include papers written in collaboration with researchers from the Baylor College of Medicine, Houston Methodist, MD Anderson, Texas Children’s Hospital, the University of Texas and UTHealth in journals including Nature Cancer, Journal of Clinical Investigation and The Journal for ImmunoTherapy of Cancer.

The new Small Business Technology Transfer (STTR) award will specifically support the development of a scalable integrated software system conceived with the goal of analyzing cells that are not fluorescently labeled. This label-free analysis will be based on new AI and machine learning (ML) models trained on tens of millions of images of cells.

“This is an opportunity to leverage artificial intelligence methods for advancing the life sciences,” says Roysam. “We are especially excited about its applications to advancing cell-based immunotherapy to treat cancer and other diseases.”

The Houston-born-and-bred company couldn’t have a more appropriate home, says Meyer.

“Houston is a premier location for clinical care and the development of biotechnology and life sciences technologies. In particular, Houston has established itself as a leader in the development and delivery of immune cell-based therapies,” the CEO explains. “As a spin-out from the Single Cell Lab at the University of Houston, we benefit from working with world-class experts at local institutions.”

In May, the company received a similar $2.5 million SBIR grant from NCATS at the NIH. Also this summer, CellChorus's technology was featured in Nature Cancer.

Baylor College of Medicine's Jessica Watts, Dr. Jerome Pollet, and Dr. Paul Ling with Tess. Photo by Jackelin Reyna/Houston Zoo

Houston med school develops revolutionary mRNA vaccine for elephants

zoology biology

An innovative team from Baylor College of Medicine and Texas Children’s Hospital has worked with the Houston Zoo to develop a first-of-its-kind treatment for elephants, which has been administered to its first patient.

Tess, the beloved, 40-year-old matriarch of the Houston Zoo’s elephant herd, is recovering well after receiving the first-ever mRNA vaccine against elephant endotheliotropic herpesvirus (EEHV) 1A on Tuesday, June 18. The veterinary staff at the Houston Zoo will monitor Tess in the coming weeks to check her reaction and the efficacy of the vaccine.

EEHV 1A is a deadly infection for Asian Elephants. While generally benign in African Elephants, Asian Elephants can develop fatal hemorrhages. The fatality rate is a whopping 80 percent, making it one of the most serous threats to elephant populations outside of humans.

Anti-viral drugs have some effect on the disease, but two-thirds show no improvement. This has led to a search for a vaccine. For 15 years, the Houston Zoo and Dr. Paul Ling at Baylor College of Medicine’s Department of Virology and Microbiology have partnered to develop the drug. They have been helped by worldwide research from zoos and animal specialists, as well as graduate student Jessica Watts and Dr. Jeroen Pollet at Houston's Texas Children’s Hospital. The research has been funded by private donations, research partnerships, and grants.

Before being inoculated, the mRNA vaccine was exhaustively tested, with the dosage being extrapolated from data involving horses.

Houston Zoo veterinarians will periodically test Tess to see if she is developing the appropriate antibodies. If she is and there are no adverse reactions, the next step will be to administer the vaccine to the rest of the Houston herd. Many of these are Tess’s own children (Tucker, Tupelo, Tilly, and Teddy) and grandchildren (Winnie).

Should the vaccine prove effective, the doses will be made available worldwide to zoos and private elephant sanctuaries. It is likely to have a significant benefit on protecting and preserving the Asian Elephant population. As of January, there are fewer than 50,000 of the animas left in the wild. They are currently listed as endangered, and breeding programs and research done through the Houston Zoo are essential to keeping the animals from going extinct.

------

This article originally ran on CultureMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

5 incubators and accelerators fueling the growth of Houston startups

meet the finalists

Houston is home to numerous accelerators and incubators that support founders in pushing their innovative startups and technologies forward.

As part of our 2025 Houston Innovation Awards, the new Incubator/Accelerator of the Year category honors a local incubator or accelerator that is championing and fueling the growth of Houston startups.

Five incubators and accelerators have been named finalists for the 2025 award. They support startups ranging from hard-tech companies to digital health startups.

Read more about these organizations below. Then join us at the Houston Innovation Awards on Nov. 13 at Greentown Labs, when the winner will be unveiled.

Get your tickets now on sale for this exclusive event celebrating Houston Innovation.

Activate

Hard tech incubator Activate supports scientists in "the outset of their entrepreneurial journey." The Houston hub was introduced last year, and joins others in Boston, New York, and Berkley, California—where Activate is headquartered. It named its second Houston cohort this summer.

This year, the incubator grew to include its largest number of concurrent supported fellows, with 88 companies currently being supported nationally. In total, Activate has supported 296 fellows who have created 236 companies. Those companies have raised over $4 billion in follow-on funding, according to Activate. In Houston, it has supported several Innovation Awards finalists, including Solidec, Bairitone Health and Deep Anchor Solutions. It is led locally by Houston Managing Director Jeremy Pitts.

EnergyTech Nexus

Cleantech startup hub EnergyTech Nexus' mission is to accelerate the energy transition by connecting founders, investors and industrial stakeholders and helping to develop transformative companies, known as "thunderlizards."

The hub was founded in 2023 by CEO Jason Ethier, Juliana Garaizar and Nada Ahmed. It has supported startups including Capwell Services, Resollant, Syzygy Plasmonics, Hertha Metals, EarthEn Energy and Solidec—many of which are current or past Innovation Awards finalists. This year Energy Tech Nexus launched its COPILOT Accelerator, powered by Wells Fargo Innovation Incubator (IN²) at the National Renewable Energy Laboratory (NREL). COPILOT partners with Browning the Green Space, a nonprofit that promotes diversity, equity and inclusion (DEI) in the clean energy and climatech sectors. Energy Tech Nexus also launched its Liftoff fundraising program, its Investor Program, and a "strategic ecosystem partnership" with Greentown Labs.

Greentown Labs

Climatetech incubator Greentown Labs offers its community resources and a network to climate and energy innovation startups looking to grow. The collaborative community offers members state-of-the-art prototyping labs, business resources and access to investors and corporate partners. The co-located incubator was first launched in Boston in 2011 before opening in Houston in 2021.

Greentown has seen major changes and activity this year. In February, Greentown announced Georgina Campbell Flatter as its new CEO, along with a new Board of Directors. In July, it announced Lawson Gow as its Head of Houston, a "dedicated role to champion the success of Greentown Houston’s startups and lead Greentown’s next chapter of impact in the region," according to Greentown. It has since announced numerous new partnerships, including those with Energy Tech Nexus, Los Angeles-based software development firm Nominal, to launch the new Industrial Center of Excellence; and Houston-based Shoreless, to launch an AI lab onsite. Greentown Houston has supported 175 startups since its launch in 2021, with 45 joining in the last two years. Those startups include the likes of Hertha Metals, RepAir Carbon, Solidec, Eclipse Energy (formerly GoldH2) and many others.

Healthtech Accelerator (TMCi)

The Healthtech Accelerator, formerly TMCx, focuses on clinical partnerships to improve healthcare delivery and outcomes. Emerging digital health and medical device startups that join the accelerator are connected with a network of TMC hospitals and seasoned advisors that will prepare them for clinical validation, funding and deployment.

The Healthtech Accelerator is part of Texas Medical Center Innovation, which also offers the TMCi Accelerator for Cancer Therapeutics. The Healthtech Accelerator named its 19th, and latest, cohort of 11 companies last month.

Impact Hub Houston

Impact Hub Houston supports early-stage ventures at various stages of development through innovative programs that address pressing societal issues. The nonprofit organization supports social impact startups through mentorship, connections and training opportunities.

There are more than 110 Impact Hubs globally with 24,000-plus members spanning 69 countries, making it one of the world’s largest communities for accelerating entrepreneurial solutions toward the United Nations' Sustainable Development Goals (SDGs).

---

The Houston Innovation Awards program is sponsored by Houston City College Northwest, Houston Powder Coaters, FLIGHT by Yuengling, and more to be announced soon. For sponsorship opportunities, please contact sales@innovationmap.com.



Rice University launches  engineering-led brain science and health institute

brain research

Rice University has announced the creation of a new interdisciplinary center known as the Rice Brain Institute (RBI).

The new hub will aim to use engineering, natural sciences and social sciences to research the brain and reduce the burden of neurodegenerative, neurodevelopmental and mental health disorders.

“The Rice Brain Institute reflects Rice’s strength in collaboration without boundaries,” Rachel Kimbro, dean of the School of Social Sciences, said in a news release. “Our researchers are not only advancing fundamental science but they’re also ensuring that knowledge reaches society in ways that promote human flourishing.”

RBI researchers will work in thematic clusters focusing on neurodegeneration, mental health, brain injury and neurodevelopment. The clusters will work toward goals such as significantly improving key brain health outcomes, reducing mortality and mental health disorders and improving quality of life for patients living with brain injuries and neurodevelopmental disorders, according to Rice.

The institute will focus on “engineering-driven innovation,” rather than traditional neuroscience, to design tools that can measure, model and modulate brain activity based around Rice’s expertise in soft robotics, neuroimaging, data science and artificial intelligence—making it unique among peer organizations, according to Rice.

Additionally, RBI will be structured around three collaborative Rice “pillars”:

  • The Neuroengineering Initiative, launched in 2018, brings together neuroscience, engineering, and related fields experts
  • The Neuroscience Initiative, a new initiative that brings together cell biologists, neurobiologists, biochemists, chemists and physicists to explore fundamental mechanisms of the brain and nervous system
  • The Brain and Society Initiative, also a new initiative, considers brain research within the broader social and policy landscape

Rice’s Neuroengineering Initiative has already garnered more than $78 million in research funding, according to Rice, and has established major partnerships, like the Rice-Houston Methodist Center for Neural Systems Restoration.

“Rice is uniquely equipped to bridge and connect scientific understanding of the brain and behavior sciences with the technologies and policies that shape our world,” Amy Dittmar, the Howard R. Hughes Provost and executive vice president for academic affairs, added in the news release. “By uniting faculty in neuroengineering, neuroscience and psychological sciences, this interdisciplinary hub embodies the kind of bold, nimble collaboration that allows Rice to turn discovery into societal impact to save lives and enhance human flourishing.”

The formation of the RBI coincides with recent support of the Dementia Prevention Research Institute of Texas (DPRIT), which landed voter approval earlier this week and aims to make Texas the center for dementia research via brain-health tech. According to the World Economic Forum, brain disorders and mental health disorders cost the global economy an estimated $5 trillion per year and could be as high as $16 trillion by 2030.

“Few areas of research have as direct and profound an impact on human well-being as brain health,” Rice President Reginald DesRoches added in the news release. “As rates of Alzheimer’s, dementia and other neurological diseases rise in our country and around the world, universities have a responsibility to lead the discovery of solutions that preserve memory, movement and quality of life. We all know someone who has been affected by a brain-related health issue, so this research is personal to all of us.”

Texas voters OK $3 billion for new dementia research institute

state funding

Texas voters on Nov. 4 overwhelmingly approved a ballot measure that provides $3 billion in state funding over a 10-year span for the newly established Dementia Prevention and Research Institute of Texas (DPRIT).

Thanks to the passage of Proposition 14, Texas now boasts the country’s largest state-funded initiative dedicated to dementia research and prevention, according to the Alzheimer’s Association. Up to $300 million in grants will be awarded during the 10-year funding period.

“This is a transformative moment for Texas and for the fight against Alzheimer’s and all other dementia,” said Joanne Pike, president and CEO of the Alzheimer’s Association. “Texans have chosen to invest in hope, innovation, and solutions for the millions of families affected by these devastating diseases. With the passage of Proposition 14, Texas is now poised to lead the nation in dementia research and prevention.”

The association says DPRIT will drive scientific breakthroughs, attract top-notch dementia researchers to Texas, and generate thousands of jobs statewide.

An estimated 460,000 Texans are living with dementia, the association says, and more than one million caregivers support them.

DPRIT is modeled after the Cancer Prevention and Research Institute of Texas (CPRIT). Since 2008, the state agency has awarded nearly $4 billion in grants to research organizations for cancer-related academic research, prevention programs, and product development.

An analysis by the McKinsey Health Institute found that investing in brain health initiatives like DPRIT could boost Texas’ GDP by $260 billion. Much of that GDP bump could benefit the Houston area, which is home to dementia-focused organizations such as UTHealth Houston Neurosciences, Baylor College of Medicine’s Center for Alzheimer’s and Neurodegenerative Diseases, the University of Texas Medical Branch at Galveston’s Collaborative Alzheimer’s Disease and Memory Disorders Program, and the Houston Methodist Research Institute’s John M. O’Quinn Foundation Neurodegenerative Disorders Laboratory.

The Greater Houston Partnership says DPRIT holds the potential “to elevate Texas — particularly Houston — as a hub for brain health research.”

State Sen. Joan Huffman, a Houston Republican, is one of DPRIT’s champions. She sponsored legislation this year to create the institute and ask Texas voters to approve the $3 billion in funding.

“By establishing the Dementia Prevention and Research Institute of Texas, we are positioning our state to lead the charge against one of the most devastating health challenges of our time,” Huffman said in May. “With $3 billion in funding over the next decade, we will drive critical research, develop new strategies for prevention and treatment, and support our health care community.”