A new AI tool from a Baylor College of Medicine Lab could help better diagnose specific types of autism spectrum disorder, epilepsy and developmental delay disorders. Photo via Getty Images.

One of the hardest parts of any medical condition is waiting for answers. Speeding up an accurate diagnosis can be a doctor’s greatest mercy to a family. A team at Baylor College of Medicine has created technology that may do exactly that.

Led by Dr. Ryan S. Dhindsa, assistant professor of pathology and immunology at Baylor and principal investigator at the Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, the scientists have developed an artificial intelligence-based approach that will help doctors to identify genes tied to neurodevelopmental disorders. Their research was recently published the American Journal of Human Genetics.

According to its website, Dhindsa Lab uses “human genomics, human stem cell models, and computational biology to advance precision medicine.” The diagnoses that stem from the new computational tool could include specific types of autism spectrum disorder, epilepsy and developmental delay, disorders that often don’t come with a genetic diagnosis.

“Although researchers have made major strides identifying different genes associated with neurodevelopmental disorders, many patients with these conditions still do not receive a genetic diagnosis, indicating that there are many more genes waiting to be discovered,” Dhindsa said in a news release.

Typically, scientists must sequence the genes of many people with a diagnosis, as well as people not affected by the disorder, to find new genes associated with a particular disease or disorder. That takes time, money, and a little bit of luck. AI minimizes the need for all three, explains Dhindsa: “We used AI to find patterns among genes already linked to neurodevelopmental diseases and predict additional genes that might also be involved in these disorders.”

The models, made using patterns expressed at the single-cell level, are augmented with north of 300 additional biological features, including data on how intolerant genes are to mutations, whether they interact with other known disease-associated genes, and their functional roles in different biological pathways.

Dhindsa says that these models have exceptionally high predictive value.

“Top-ranked genes were up to two-fold or six-fold, depending on the mode of inheritance, more enriched for high-confidence neurodevelopmental disorder risk genes compared to genic intolerance metrics alone,” he said in the release. “Additionally, some top-ranking genes were 45 to 500 times more likely to be supported by the literature than lower-ranking genes.”

That means that the models may actually validate genes that haven’t yet been proven to be involved in neurodevelopmental conditions. Gene discovery done with the help of AI could possibly become the new normal for families seeking answers beyond umbrella terms like “autism spectrum disorder.”

“We hope that our models will accelerate gene discovery and patient diagnoses, and future studies will assess this possibility,” Dhindsa added.

Research from Baylor College of Medicine and the Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital will help develop targeted treatments for individuals with auditory disorders. Photo via Getty Images.

Houston scientists make breakthrough in hearing science and treatment research

sounds good

Researchers at Baylor College of Medicine and the Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital have successfully mapped which cell populations are responsible for processing different types of sounds.

Working with a team at the Oregon Health & Science University, the Houston scientists have classified where in the cochlear nucleus our brains connect with various sounds, including speech and music. The research was published in the new edition of Nature Communications.

“Understanding these cell types and how they function is essential in advancing treatments for auditory disorders,” Matthew McGinley, assistant professor of neuroscience at Baylor, said in a release. “Think of how muscle cells in the heart are responsible for contraction, while valve cells control blood flow. The auditory brainstem operates in a similar fashion — different cell types respond to distinct aspects of sound.”

Though scientists have long thought that there are distinct types of cells in the cochlear nucleus, they didn’t have tools to distinguish them until now.

Lead author on the study, Xiaolong Jiang, associate professor of neuroscience at Baylor, added: “This study not only confirms many of the cell types we anticipated, but it also unveils entirely new ones, challenging long-standing principles of hearing processing in the brain and offering fresh avenues for therapeutic exploration.”

Jiang and his team have cooked up a comprehensive cellular and molecular atlas of the cochlear nucleus, which will help them to create more targeted and more effective treatments for patients struggling with their hearing.

The strategies that aided them in creating these tools included single-nucleus RNA sequencing, which made it possible to define neuronal populations on a molecular level. Phenotypic categorizations of the cells were made possible with patch sequencing.

This is a watershed moment for the development of targeted treatments for individuals with auditory disorders, including those with impaired function in the auditory nerve, for whom cochlear implants don’t work.

“If we can understand what each cell type is responsible for, and with the identification of new subtypes of cells, doctors can potentially develop treatments that target specific cells with greater accuracy,” McGinley explains. “These findings, thanks to the work of our collaborative team, make a significant step forward in the field of auditory research and get us closer to a more personalized treatment for each patient.”

The University of Texas MD Anderson Cancer Center was recognized for advancements in electronic functionality, AI and robotics. Photo via mdanderson.org

Houston hospital named among smartest in the nation

hi, tech

Houston hospitals are chock-full of smart people. But they’re also equipped with lots of “smart” technology. In fact, five local hospitals appear on Newsweek’s new list of the world’s best “smart” hospitals.

To compile the list, Newsweek teamed up with data provider Statista to rank the world’s top 330 hospitals for the use of smart technology. The ranking factors were electronic functionality, telemedicine, digital imaging, artificial intelligence (AI), and robotics.

The highest-ranked Houston hospital is the University of Texas MD Anderson Cancer Center, appearing at No. 6. The hospital was recognized for advancements in electronic functionality, AI and robotics.

“MD Anderson has a significant opportunity and a responsibility to our many stakeholders to create a digital ecosystem that promotes collaboration and advances scientific discovery to enhance patient outcomes,” David Jaffray, the cancer center’s chief technology and digital officer, said in a 2021 news release.

“Through our ongoing focus on enabling the use of new technologies to place quantitative data in context for our researchers,” Jaffray added, “we foster cutting-edge oncology data science to inform our cancer discovery research and to accelerate translation of our research findings into benefits for cancer patients.”

Ahead of MD Anderson on the list are:

  1. Mayo Clinic in Rochester, Minnesota.
  2. Cleveland Clinic in Cleveland.
  3. Massachusetts General Hospital in Boston.
  4. Johns Hopkins Hospital in Baltimore.
  5. Mount Sinai Hospital in New York City.

Other Houston hospitals on the list are:

  • Houston Methodist Hospital, No. 11.
  • Baylor St. Luke’s Medical Center, No. 105.
  • Texas Children’s Hospital, No. 197.
  • Memorial Hermann-Texas Medical Center, No. 266.
CellChorus announced that the company, along with The University of Houston, has been awarded up to $2.5 million in funding. Photo via Getty Images

University of Houston-founded company secures $2.5M in NIH grant funding

all in the timing

You could say that the booming success of Houston biotech company CellChorus owes very much to auspicious TIMING. Those six letters stand for Time-lapse Imaging Microscopy In Nanowell Grids, a platform for dynamic single-cell analysis.

This week, CellChorus announced that the company, along with The University of Houston, has been awarded up to $2.5 million in funding from the National Center for Advancing Translational Sciences (NCATS) at the National Institute of Health. A $350,000 Phase I grant is already underway. Once predetermined milestones are achieved, this will lead to a two-year $2.1 million Phase II grant.

The TIMING platform was created by UH Single Cell Lab researchers Navin Varadarajan and Badri Roysam. TIMING generates high-throughput in-vitro assays that quantitatively profile interactions between cells on a large scale, particularly what happens when immune cells confront target cells. This has been especially useful in the realm of immuno-oncology, where it has demonstrated its power in designing novel therapies, selecting lead candidates for clinical trials and evaluating the potency of manufactured cells.

“By combining AI, microscale manufacturing and advanced microscopy, the TIMING platform yields deep insight into cellular behaviors that directly impact human disease and new classes of therapeutics,” says Rebecca Berdeaux, chief scientific officer at CellChorus. “The generous support of NCATS enables our development of computational tools that will ultimately integrate single-cell dynamic functional analysis of cell behavior with intracellular signaling events.”

Houston’s CellChorus Innovation Lab supports both the further development of TIMING and projects for early-access customers. Those customers include top-25 biopharmaceutical companies, venture-backed biotechnology companies, a leading comprehensive cancer center and a top pediatric hospital, says CEO Daniel Meyer.

CellChorus’s publications include papers written in collaboration with researchers from the Baylor College of Medicine, Houston Methodist, MD Anderson, Texas Children’s Hospital, the University of Texas and UTHealth in journals including Nature Cancer, Journal of Clinical Investigation and The Journal for ImmunoTherapy of Cancer.

The new Small Business Technology Transfer (STTR) award will specifically support the development of a scalable integrated software system conceived with the goal of analyzing cells that are not fluorescently labeled. This label-free analysis will be based on new AI and machine learning (ML) models trained on tens of millions of images of cells.

“This is an opportunity to leverage artificial intelligence methods for advancing the life sciences,” says Roysam. “We are especially excited about its applications to advancing cell-based immunotherapy to treat cancer and other diseases.”

The Houston-born-and-bred company couldn’t have a more appropriate home, says Meyer.

“Houston is a premier location for clinical care and the development of biotechnology and life sciences technologies. In particular, Houston has established itself as a leader in the development and delivery of immune cell-based therapies,” the CEO explains. “As a spin-out from the Single Cell Lab at the University of Houston, we benefit from working with world-class experts at local institutions.”

In May, the company received a similar $2.5 million SBIR grant from NCATS at the NIH. Also this summer, CellChorus's technology was featured in Nature Cancer.

Baylor College of Medicine's Jessica Watts, Dr. Jerome Pollet, and Dr. Paul Ling with Tess. Photo by Jackelin Reyna/Houston Zoo

Houston med school develops revolutionary mRNA vaccine for elephants

zoology biology

An innovative team from Baylor College of Medicine and Texas Children’s Hospital has worked with the Houston Zoo to develop a first-of-its-kind treatment for elephants, which has been administered to its first patient.

Tess, the beloved, 40-year-old matriarch of the Houston Zoo’s elephant herd, is recovering well after receiving the first-ever mRNA vaccine against elephant endotheliotropic herpesvirus (EEHV) 1A on Tuesday, June 18. The veterinary staff at the Houston Zoo will monitor Tess in the coming weeks to check her reaction and the efficacy of the vaccine.

EEHV 1A is a deadly infection for Asian Elephants. While generally benign in African Elephants, Asian Elephants can develop fatal hemorrhages. The fatality rate is a whopping 80 percent, making it one of the most serous threats to elephant populations outside of humans.

Anti-viral drugs have some effect on the disease, but two-thirds show no improvement. This has led to a search for a vaccine. For 15 years, the Houston Zoo and Dr. Paul Ling at Baylor College of Medicine’s Department of Virology and Microbiology have partnered to develop the drug. They have been helped by worldwide research from zoos and animal specialists, as well as graduate student Jessica Watts and Dr. Jeroen Pollet at Houston's Texas Children’s Hospital. The research has been funded by private donations, research partnerships, and grants.

Before being inoculated, the mRNA vaccine was exhaustively tested, with the dosage being extrapolated from data involving horses.

Houston Zoo veterinarians will periodically test Tess to see if she is developing the appropriate antibodies. If she is and there are no adverse reactions, the next step will be to administer the vaccine to the rest of the Houston herd. Many of these are Tess’s own children (Tucker, Tupelo, Tilly, and Teddy) and grandchildren (Winnie).

Should the vaccine prove effective, the doses will be made available worldwide to zoos and private elephant sanctuaries. It is likely to have a significant benefit on protecting and preserving the Asian Elephant population. As of January, there are fewer than 50,000 of the animas left in the wild. They are currently listed as endangered, and breeding programs and research done through the Houston Zoo are essential to keeping the animals from going extinct.

------

This article originally ran on CultureMap.

This uniquely Houston technology is an AI program that allows scientists to understand the functions of cells by evaluating cell activation, killing, and movement. Photo via Getty Images

University of Houston lab reports breakthrough in cancer-detecting technology

making moves

T-cell immunotherapy is all the rage in the world of fighting cancer. A Houston company’s researchers have discovered a new subset of T cells that could be a game changer for patients.

CellChorus is a spinoff of Navin Varadarajan’s Single Cell Lab, part of the University of Houston’s Technology Bridge. The lab is the creator of TIMING, or Time-lapse Imaging Microscopy In Nanowell Grids. It’s a visual AI program that allows scientists to understand the functions of cells by evaluating cell activation, killing, and movement.

Last month, Nature Cancer published a paper co-authored by Varadarajan entitled, “Identification of a clinically efficacious CAR T cell subset in diffuse large B cell lymphoma by dynamic multidimensional single-cell profiling.”

“Our results showed that a subset of T cells, labeled as CD8-fit T cells, are capable of high motility and serial killing, found uniquely in patients with clinical response,” says first author and recent UH graduate Ali Rezvan in Nature Cancer.

Besides him and Varadarajan, contributors hail from Baylor College of Medicine/Texas Children’s Hospital, MD Anderson Cancer Center, Kite Pharma, and CellChorus itself.

The team identified the CD80-fit T cells using TIMING to examine interactions between T cells and tumor cells across thousands of individual cells. They were able to integrate the results using single-cell RNA sequencing data.

T-cell therapy activates a patient’s own immune system to fight cancer cells, but not every patient responds favorably to it. Identifying CD8-fit cells could be the key to manufacturing clinical response even in those for whom immunotherapy hasn’t been effective.

“This work illustrates the excellence of graduate students Ali Rezvan and Melisa Montalvo; and post-doctoral researchers Melisa Martinez-Paniagua and Irfan Bandey among others,” says Varadarajan in a statement.

Earlier last month, CellChorus recently received a $2.5 million SBIR grant. The money allows the company to share TIMING more widely, facilitating even more landmark discoveries like CD8-fit cells.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas robotics co. begins new search for missing Malaysia Airlines flight 370

International News

Malaysia’s government has given final approval for a Texas-based marine robotics company to renew the search for Malaysia Airlines Flight 370, which is believed to have crashed in the southern Indian Ocean more than a decade ago.

Cabinet ministers agreed to terms and conditions for a “no-find, no-fee” contract with Texas-based Ocean Infinity to resume the seabed search operation at a new 5,800-square-mile site in the ocean, Transport Minister Anthony Loke said in a statement Wednesday. Ocean Infinity will be paid $70 million only if wreckage is discovered.

The Boeing 777 plane vanished from radar shortly after taking off on March 8, 2014, carrying 239 people, mostly Chinese nationals, on a flight from Malaysia’s capital, Kuala Lumpur, to Beijing. Satellite data showed the plane turned from its flight path and headed south to the far-southern Indian Ocean, where it is believed to have crashed.

An expensive multinational search failed to turn up any clues to its location, although debris washed ashore on the east African coast and Indian Ocean islands. A private search in 2018 by Ocean Infinity also found nothing.

The final approval for a new search came three months after Malaysia gave the nod in principle to plans for a fresh search.

Ocean Infinity CEO Oliver Punkett earlier this year reportedly said the company had improved its technology since 2018. He has said the firm is working with many experts to analyze data and had narrowed the search area to the most likely site.

Loke said his ministry will ink a contract with Ocean Infinity soon but didn’t provide details on the terms. The firm has reportedly sent a search vessel to the site and indicated that January-April is the best period for the search.

“The government is committed to continuing the search operation and providing closure for the families of the passengers of flight MH370,” he said in a statement.

Harris County booms with 3rd biggest population in U.S.

Boomtown

Newly released U.S. Census Bureau data has revealed Harris County became the third most populous county nationwide in 2024, and it had the highest year-over-year growth rate from 2023.

The new population report, published this month, estimated year-over-year population data from 2023 to 2024 across all 3,144 U.S. counties, and 387 metro areas.

Harris County's numeric growth rate outpaced all other U.S. counties from July 1, 2023 to July 1, 2024, the report found. The Census Bureau estimated Harris County's population grew by 105,852 people year-over-year, bringing the total population to 5,009,302 residents. That's around a 2.16 percent growth rate.

Los Angeles County, California (No. 1) and Illinois' Cook County (No. 2) are the only two U.S. counties that have larger populations than Harris County. Los Angeles County now boasts a population of nearly 9.76 million, while Cook County's has increased to more than 5.18 million people.

The top 10 most populous counties in the U.S. are:

  • No. 1 – Los Angles County, California
  • No. 2 – Cook County, Illinois
  • No. 3 – Harris County, Texas
  • No. 4 – Maricopa County, Arizona
  • No. 5 – San Diego County, California
  • No. 6 – Orange County, California
  • No. 7 – Miami-Dade County, Florida
  • No. 8 – Dallas County, Texas
  • No. 9 – Kings County, New York
  • No. 10 – Riverside County, California

Montgomery County also ranked among the top 10 U.S. counties with the highest numeric growth, ranking 9th nationally after gaining 34,268 residents from 2023 to 2024. Montgomery County's population has now grown to 749,613 people.

In the report's national comparison of counties with the largest population growth by percentage, Montgomery County ranked No. 7 with a year-over-year growth rate of 4.8 percent.

Most populated U.S. metro areas

The U.S. Census Bureau additionally found Houston-Pasadena-The Woodlands nearly led the nation as the second-fastest growing metro area in 2024.

From July 2023 to July 2024, the Houston metro added 198,171 residents to bring the total population to 7,796,182.

New York-Newark-Jersey City was the only metro area to outpace Houston's growth during the one-year period. The New York-New Jersey metro added 213,403 new residents, which brought the total population to over 19.94 million last year.

Kristie Wilder, a Census Bureau Population Division demographer, said in the report that the nation's population growth in its major metros was largely impacted by international migration rather than changes in birth rates.

"While births continue to contribute to overall growth, rising net international migration is offsetting the ongoing net domestic outmigration we see in many of these areas," Wilder said.

Dallas-Fort Worth-Arlington was right behind Houston as the third-fastest growing U.S. metro in 2024. The Metroplex gained 177,922 residents last year, and now has a total population of more than 8.34 million.

The top 10 U.S. metros with the highest numeric growth from 2023 to 2024 are:

  • No. 1 – New York-Newark-Jersey City, New York-New Jersey
  • No. 2 – Houston-Pasadena-The Woodlands, Texas
  • No. 3 – Dallas-Fort Worth-Arlington, Texas
  • No. 4 – Miami-Fort Lauderdale-West Palm Beach, Florida
  • No. 5 – Washington-Arlington-Alexandria, D.C.-Virginia-Maryland-West Virginia
  • No. 6 – Phoenix-Mesa-Chandler, Arizona
  • No. 7 – Orlando-Kissimmee-Sanford, Florida
  • No. 8 – Atlanta-Sandy Springs-Roswell, Georgia
  • No. 9 – Chicago-Naperville-Elgin, Illinois-Indiana
  • No. 10 – Seattle-Tacoma-Bellevue, Washington
---

This article originally appeared on our sister site, CultureMap.com.

New report reveals how much Texans are warming up to AI

eyes on ai

When new technology emerges, many of us approach it with a certain amount of skepticism. That’s certainly true with artificial intelligence, which is creeping into practically every part of our existence. Pew Research Center surveys show that more than half (52 percent) of Americans are increasingly cautious about the growing presence of AI in their everyday lives.

So, how wary are Texans of AI? A new ranking from ZapCap, whose AI generates captions for videos, gives us a clue. Texas ranks 15th among the states that are most trusting of AI, with a trust score of 85 out of 100.

Translation: Texans appear to be OK with embracing AI.

To develop the ranking, ZapCap collected search volume data for AI-related queries, including terms such as “best AI tools,” “best AI assistants,” “how to use AI” and “ChatGPT.” ZapCap then calculated a trust score based on each state’s search activity and population.

“This research provides an insightful look into AI engagement patterns across the U.S., highlighting the states where AI is most actively explored and potentially trusted,” says ZapCap.

With an off-the-charts score of 116, California tops the list. California “demonstrates extraordinary AI engagement with over 44 million ChatGPT searches and 77,910 Claude.AI queries, marking the highest AI tool adoption rates across all metrics,” says ZapCap.

Here’s the rest of the top five, including their AI trust scores:

  • New York — 108
  • Massachusetts — 106
  • Virginia — 102
  • New Jersey — 99

The state with the least amount of AI trust is Minnesota, which received a ZapCap score of 22.

“What’s fascinating is that innovation is blooming far beyond the usual tech hotspots,” ZapCap’s Jessica Bui said in a release. “While California and New York continue to lead, states like Massachusetts and Virginia are rising as innovation powerhouses. Their rapid adoption of new technology proves that it's not about market size — it’s about fostering a culture where businesses and everyday people feel confident exploring what's next.”

See the full findings here.