The University of Texas MD Anderson Cancer Center was recognized for advancements in electronic functionality, AI and robotics. Photo via mdanderson.org

Houston hospitals are chock-full of smart people. But they’re also equipped with lots of “smart” technology. In fact, five local hospitals appear on Newsweek’s new list of the world’s best “smart” hospitals.

To compile the list, Newsweek teamed up with data provider Statista to rank the world’s top 330 hospitals for the use of smart technology. The ranking factors were electronic functionality, telemedicine, digital imaging, artificial intelligence (AI), and robotics.

The highest-ranked Houston hospital is the University of Texas MD Anderson Cancer Center, appearing at No. 6. The hospital was recognized for advancements in electronic functionality, AI and robotics.

“MD Anderson has a significant opportunity and a responsibility to our many stakeholders to create a digital ecosystem that promotes collaboration and advances scientific discovery to enhance patient outcomes,” David Jaffray, the cancer center’s chief technology and digital officer, said in a 2021 news release.

“Through our ongoing focus on enabling the use of new technologies to place quantitative data in context for our researchers,” Jaffray added, “we foster cutting-edge oncology data science to inform our cancer discovery research and to accelerate translation of our research findings into benefits for cancer patients.”

Ahead of MD Anderson on the list are:

  1. Mayo Clinic in Rochester, Minnesota.
  2. Cleveland Clinic in Cleveland.
  3. Massachusetts General Hospital in Boston.
  4. Johns Hopkins Hospital in Baltimore.
  5. Mount Sinai Hospital in New York City.

Other Houston hospitals on the list are:

  • Houston Methodist Hospital, No. 11.
  • Baylor St. Luke’s Medical Center, No. 105.
  • Texas Children’s Hospital, No. 197.
  • Memorial Hermann-Texas Medical Center, No. 266.
CellChorus announced that the company, along with The University of Houston, has been awarded up to $2.5 million in funding. Photo via Getty Images

University of Houston-founded company secures $2.5M in NIH grant funding

all in the timing

You could say that the booming success of Houston biotech company CellChorus owes very much to auspicious TIMING. Those six letters stand for Time-lapse Imaging Microscopy In Nanowell Grids, a platform for dynamic single-cell analysis.

This week, CellChorus announced that the company, along with The University of Houston, has been awarded up to $2.5 million in funding from the National Center for Advancing Translational Sciences (NCATS) at the National Institute of Health. A $350,000 Phase I grant is already underway. Once predetermined milestones are achieved, this will lead to a two-year $2.1 million Phase II grant.

The TIMING platform was created by UH Single Cell Lab researchers Navin Varadarajan and Badri Roysam. TIMING generates high-throughput in-vitro assays that quantitatively profile interactions between cells on a large scale, particularly what happens when immune cells confront target cells. This has been especially useful in the realm of immuno-oncology, where it has demonstrated its power in designing novel therapies, selecting lead candidates for clinical trials and evaluating the potency of manufactured cells.

“By combining AI, microscale manufacturing and advanced microscopy, the TIMING platform yields deep insight into cellular behaviors that directly impact human disease and new classes of therapeutics,” says Rebecca Berdeaux, chief scientific officer at CellChorus. “The generous support of NCATS enables our development of computational tools that will ultimately integrate single-cell dynamic functional analysis of cell behavior with intracellular signaling events.”

Houston’s CellChorus Innovation Lab supports both the further development of TIMING and projects for early-access customers. Those customers include top-25 biopharmaceutical companies, venture-backed biotechnology companies, a leading comprehensive cancer center and a top pediatric hospital, says CEO Daniel Meyer.

CellChorus’s publications include papers written in collaboration with researchers from the Baylor College of Medicine, Houston Methodist, MD Anderson, Texas Children’s Hospital, the University of Texas and UTHealth in journals including Nature Cancer, Journal of Clinical Investigation and The Journal for ImmunoTherapy of Cancer.

The new Small Business Technology Transfer (STTR) award will specifically support the development of a scalable integrated software system conceived with the goal of analyzing cells that are not fluorescently labeled. This label-free analysis will be based on new AI and machine learning (ML) models trained on tens of millions of images of cells.

“This is an opportunity to leverage artificial intelligence methods for advancing the life sciences,” says Roysam. “We are especially excited about its applications to advancing cell-based immunotherapy to treat cancer and other diseases.”

The Houston-born-and-bred company couldn’t have a more appropriate home, says Meyer.

“Houston is a premier location for clinical care and the development of biotechnology and life sciences technologies. In particular, Houston has established itself as a leader in the development and delivery of immune cell-based therapies,” the CEO explains. “As a spin-out from the Single Cell Lab at the University of Houston, we benefit from working with world-class experts at local institutions.”

In May, the company received a similar $2.5 million SBIR grant from NCATS at the NIH. Also this summer, CellChorus's technology was featured in Nature Cancer.

Baylor College of Medicine's Jessica Watts, Dr. Jerome Pollet, and Dr. Paul Ling with Tess. Photo by Jackelin Reyna/Houston Zoo

Houston med school develops revolutionary mRNA vaccine for elephants

zoology biology

An innovative team from Baylor College of Medicine and Texas Children’s Hospital has worked with the Houston Zoo to develop a first-of-its-kind treatment for elephants, which has been administered to its first patient.

Tess, the beloved, 40-year-old matriarch of the Houston Zoo’s elephant herd, is recovering well after receiving the first-ever mRNA vaccine against elephant endotheliotropic herpesvirus (EEHV) 1A on Tuesday, June 18. The veterinary staff at the Houston Zoo will monitor Tess in the coming weeks to check her reaction and the efficacy of the vaccine.

EEHV 1A is a deadly infection for Asian Elephants. While generally benign in African Elephants, Asian Elephants can develop fatal hemorrhages. The fatality rate is a whopping 80 percent, making it one of the most serous threats to elephant populations outside of humans.

Anti-viral drugs have some effect on the disease, but two-thirds show no improvement. This has led to a search for a vaccine. For 15 years, the Houston Zoo and Dr. Paul Ling at Baylor College of Medicine’s Department of Virology and Microbiology have partnered to develop the drug. They have been helped by worldwide research from zoos and animal specialists, as well as graduate student Jessica Watts and Dr. Jeroen Pollet at Houston's Texas Children’s Hospital. The research has been funded by private donations, research partnerships, and grants.

Before being inoculated, the mRNA vaccine was exhaustively tested, with the dosage being extrapolated from data involving horses.

Houston Zoo veterinarians will periodically test Tess to see if she is developing the appropriate antibodies. If she is and there are no adverse reactions, the next step will be to administer the vaccine to the rest of the Houston herd. Many of these are Tess’s own children (Tucker, Tupelo, Tilly, and Teddy) and grandchildren (Winnie).

Should the vaccine prove effective, the doses will be made available worldwide to zoos and private elephant sanctuaries. It is likely to have a significant benefit on protecting and preserving the Asian Elephant population. As of January, there are fewer than 50,000 of the animas left in the wild. They are currently listed as endangered, and breeding programs and research done through the Houston Zoo are essential to keeping the animals from going extinct.

------

This article originally ran on CultureMap.

This uniquely Houston technology is an AI program that allows scientists to understand the functions of cells by evaluating cell activation, killing, and movement. Photo via Getty Images

University of Houston lab reports breakthrough in cancer-detecting technology

making moves

T-cell immunotherapy is all the rage in the world of fighting cancer. A Houston company’s researchers have discovered a new subset of T cells that could be a game changer for patients.

CellChorus is a spinoff of Navin Varadarajan’s Single Cell Lab, part of the University of Houston’s Technology Bridge. The lab is the creator of TIMING, or Time-lapse Imaging Microscopy In Nanowell Grids. It’s a visual AI program that allows scientists to understand the functions of cells by evaluating cell activation, killing, and movement.

Last month, Nature Cancer published a paper co-authored by Varadarajan entitled, “Identification of a clinically efficacious CAR T cell subset in diffuse large B cell lymphoma by dynamic multidimensional single-cell profiling.”

“Our results showed that a subset of T cells, labeled as CD8-fit T cells, are capable of high motility and serial killing, found uniquely in patients with clinical response,” says first author and recent UH graduate Ali Rezvan in Nature Cancer.

Besides him and Varadarajan, contributors hail from Baylor College of Medicine/Texas Children’s Hospital, MD Anderson Cancer Center, Kite Pharma, and CellChorus itself.

The team identified the CD80-fit T cells using TIMING to examine interactions between T cells and tumor cells across thousands of individual cells. They were able to integrate the results using single-cell RNA sequencing data.

T-cell therapy activates a patient’s own immune system to fight cancer cells, but not every patient responds favorably to it. Identifying CD8-fit cells could be the key to manufacturing clinical response even in those for whom immunotherapy hasn’t been effective.

“This work illustrates the excellence of graduate students Ali Rezvan and Melisa Montalvo; and post-doctoral researchers Melisa Martinez-Paniagua and Irfan Bandey among others,” says Varadarajan in a statement.

Earlier last month, CellChorus recently received a $2.5 million SBIR grant. The money allows the company to share TIMING more widely, facilitating even more landmark discoveries like CD8-fit cells.

A TMC-based organization supporting innovation pediatric medical devices has secured a $7.4 million grant. Photo via tmc.edu

Pediatric device consortium led by Baylor, Texas Children's lands $7.4M FDA grant

SWPDC scores

The Southwest National Pediatric Device Innovation Consortium announced this month that it has received a $7.4 million grant from the Food and Drug Administration to continue developing innovative pediatric medical devices.

Led by Baylor College of Medicine and Texas Children’s Hospital, SWPDC supports the development and commercialization of devices relating to children's health, including synthetic pediatric heart valves, miniature injection devices and neonatal intensive care unit monitoring devices, according to a statement from Baylor.

According to Dr. Chester Koh, SWPDC executive director and principal investigator, who is also a professor of urology at Baylor and a pediatric urologist at Texas Children’s, physicians today often have to treat pediatric patients with devices that are designed for larger adult bodies.

"This grant allows us to continue to spur development of devices specifically designed for kids by providing funding, consulting, clinical expertise and other assistance, all of which is made possible by our co-existence in the healthcare innovation ecosystem of the Texas Medical Center,” he said in the statement.

The SWPDC received a similar five-year grant in 2018 from the FDA, and has since added 200 pediatric device projects in all stages of development to its portfolio, raising in total more than $200 million in follow-on funding for the technology. It's one of five consortia in the FDA’s Pediatric Device Consortia (PDC), with others in Pennsylvania, Washington D.C., the San Francisco Bay Area, and Los Angeles.

Regionally, the consortium members include engineers from Texas A&M University, Rice University, University of Houston and the University of Minnesota, as it looks to expand into the midwest. It also partners with Texas Medical Center Innovation, JLABS@TMC and Proxima CRO.

In addition to the $7.4 million grant, SWPDC also received funding for its real-world data/real-world evidence (RWD/RWE) demonstration projects that focus on postoperative cardiac care, according to BCM.

Earlier this summer, Houston-based medtech company CorInnova was one of five companies invited to invited to present pitches at the National Capital Consortium for Pediatric Device Innovation’s “Make Your Medical Device Pitch for Kids!” competition. The event takes place this month and the companies are competing for a share of $150,000 in grant funding from the FDA. CorInnova has developed a minimally invasive device for the treatment of congestive heart failure.

Texas Children's Hospital and Baylor College of Medicine are working on a new COVID-19 vaccine candidate. Photo by Dwight C. Andrews/Greater Houston Convention and Visitors Bureau

Houston health care organizations team up for the 'people's vaccine'

COVID Collaboration

Two major health care institutions in Houston — Texas Children's Hospital and the Baylor College of Medicine — are a step closer to rolling out what they dub the "people's vaccine" for COVID-19.

The two institutions, along with India-based vaccine and pharmaceutical company Biological E Ltd., have gained approval to move ahead this month with Phase III clinicals trials in India of a COVID-19 vaccine candidate called Corbevax. The Texas Children's Hospital Center for Vaccine Development developed the vaccine's protein antigen, which was licensed from the Baylor College of Medicine's BCM Ventures commercialization arm.

Unlike COVID-19 vaccines in the U.S., Corbevax contains the so-called "spike protein" from the surface of the novel coronavirus. Once that protein is injected via a vaccine, the body is supposed to begin building immunity against the protein and thereby prevent serious illness.

Experts envision Corbevax being a readily available weapon in the global fight against the COVID-19 pandemic, thanks to the simple vaccine platform (like the one used to prevent Hepatitis B) and the ability to store the vaccine in normal refrigerated settings. The targets of this vaccine are children and mothers.

"In the midst of India's public health crisis, it is our hope that our Texas Children's and Baylor COVID-19 vaccine can be released for emergency authorization in India and in all countries in need of essential COVID-19 vaccinations," Dr. Peter Hotez, co-director of the Texas Children's Hospital Center for Vaccine Development, says in a June 9 news release.

India has reported more than 29 million cases of COVID-19, causing 354,000 deaths. The country's COVID-19 surge reached its peak in May.

"The vaccines currently available cannot be manufactured quick enough to meet supply shortages in low-income countries," Hotez says. "Our vaccine is truly 'the people's vaccine,' created to serve the most marginalized and underserved populations that are hardest hit by this pandemic. This is the vaccine that could be used to vaccinate the world."

In the Phase III trial, the two-dose Corbevax vaccine will be administered to about 1,200 people age 18 to 80 at 15 sites in India. A larger global study of Corbevax is in the works.

According to India.com, Corbevax could be the most affordable COVID-19 vaccine available in the nation of nearly 1.37 billion people, costing close to $7 for a two-dose regimen. The Indian government already has preordered 300 million doses of Corbevax, which has shown promise in Phase I and Phase II trials. The Phase II trial ended in April.

If the Phase III trial goes as planned, doses could be widely administered as soon as August. Biological E initially plans to produce 75 million to 80 million doses per month, according to media reports. The Indian company foresees manufacturing at least 1 billion doses by the end of 2022.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston investor on why 2025 will be the year of exits

houston innovators podcast episode 270

Samantha Lewis will be the first to admit that the past few years have been tough on startups and venture capital investors alike. However, as she explains on the Houston Innovators Podcast, the new year is expected to look very different.

"We're super excited going into 2025," says Lewis, who is a partner at Houston-based VC firm Mercury. "For us, 2024 was a year of laying a lot of groundwork for what we believe is going to be a massive year of startup exits and liquidity for the venture ecosystem. We've been hard at work making sure our companies are prepared for that."

Mercury, in fact, has already gotten a taste, with three of its portfolio companies celebrating exits — all with Houston roots. Fintech platform Brassica was acquired by BitGo in February, and Apparatus, founded as Topl in Houston, was acquired early last year. The third deal has yet to be announced publicly.

And it's just getting started, Lewis says. She explains that all of the companies in Mercury's portfolio that are promising — albeit not break-out, to-be-billion-dollar companies — are going to have opportunities to sell in 2025 and 2026.

"What we've started to do — and I encourage everyone to do this if you're working on a startup — is just start to just engage with strategic buyers, investment bankers, and people you think might be a great fit to buy your company," Lewis says, "because we really think that the next few years will be the best liquidity years we've seen in a really long time. And if you're not ready for it, you're going to miss the boat."

In addition to sharing her advice to get "exit preparedness," Lewis explains some specific tech trends she's keeping an eye on in Mercury's "power theme," which she works on directly. This encompasses fintech, blockchain, web3 and more.

SpaceX loses mega rocket in latest thrilling Starship test flight

Testing

SpaceX launched its Starship rocket on its latest test flight Thursday, but the spacecraft was destroyed following a thrilling booster catch back at the pad.

Elon Musk’s company said Starship broke apart — what it called a “rapid unscheduled disassembly." The spacecraft's six engines appeared to shut down one by one during ascent, with contact lost just 8 1/2 minutes into the flight.

The spacecraft — a new and upgraded model making its debut — was supposed to soar across the Gulf of Mexico from Texas on a near loop around the world similar to previous test flights. SpaceX had packed it with 10 dummy satellites for practice at releasing them.

A minute before the loss, SpaceX used the launch tower's giant mechanical arms to catch the returning booster, a feat achieved only once before. The descending booster hovered over the launch pad before being gripped by the pair of arms dubbed chopsticks.

The thrill of the catch quickly turned into disappointment for not only the company, but the crowds gathered along the southern tip of Texas.

“It was great to see a booster come down, but we are obviously bummed out about [the] ship,” said SpaceX spokesman Dan Huot. “It’s a flight test. It’s an experimental vehicle," he stressed.

The last data received from the spacecraft indicated an altitude of 90 miles and a velocity of 13,245 mph.

Musk said a preliminary analysis suggests leaking fuel may have built up pressure in a cavity above the engine firewall. Fire suppression will be added to the area, with increased venting and double-checking for leaks, he said via X.

The 400-foot rocket had thundered away in late afternoon from Boca Chica Beach near the Mexican border. The late hour ensured a daylight entry halfway around the world in the Indian Ocean. But the shiny retro-looking spacecraft never got nearly that far.

SpaceX had made improvements to the spacecraft for the latest demo and added a fleet of satellite mockups. The test satellites were the same size as SpaceX’s Starlink internet satellites and, like the spacecraft, were meant to be destroyed upon entry.

Musk plans to launch actual Starlinks on Starships before moving on to other satellites and, eventually, crews.

It was the seventh test flight for the world’s biggest and most powerful rocket. NASA has reserved a pair of Starships to land astronauts on the moon later this decade. Musk’s goal is Mars.

Hours earlier in Florida, another billionaire’s rocket company — Jeff Bezos’ Blue Origin — launched the newest supersized rocket, New Glenn. The rocket reached orbit on its first flight, successfully placing an experimental satellite thousands of miles above Earth. But the first-stage booster was destroyed, missing its targeted landing on a floating platform in the Atlantic.

Houston private equity firm beats target on first investment fund

fresh funds

Houston-based private equity firm Sallyport has raised $160 million for its first investment fund, exceeding the target amount by $10 million.

The Sallyport Partners Fund focuses primarily on investments in founder- and family-owned businesses, corporate carve-outs and startups in various industries.

The firm’s chairman, Doug Foshee, seeded the fund. He and managing partners Kyle Bethancourt and Ryan Howard started the firm in 2023.

“Sallyport Partners Fund was created to utilize the proven processes our team has developed over time to generate value for like-minded investors on a larger and more impactful scale,” Foshee says in a news release.

Investors in the Sallyport fund include entrepreneurs, business executives and influential Texas families. Aside from Foshee, names of the fund’s investors weren’t disclosed.

“We are deeply committed to working hand-in-hand with management teams to drive transformative growth and generate long-term value,” says Bethancourt. “Our operational capabilities are forged from decades of firsthand experience leading, investing in, and building thriving businesses from the ground up. We have a unique appreciation for the management team’s perspective because we’ve been in their shoes.”

Those shoes have covered some pretty impressive ground:

  • Foshee is former chairman, president, and CEO of Houston-based El Paso Corp., which owned and operated a 44,000-mile natural gas pipeline network. In 2012, El Paso merged with Houston-based pipeline company Kinder Morgan in a multibillion-dollar deal.
  • Before Sallyport, Bethancourt was a vice president in the credit division of Blackstone, an investment powerhouse with more than $1 trillion in assets under management. Earlier, he worked at D.E. Shaw & Co., a New York City-based hedge fund with more than $65 billion in assets under management.
  • Before Sallyport, Howard worked at Platform Partners, a Houston-based private equity firm. Earlier, he worked for the natural resources arm of investment banking giant Goldman Sachs.