Now that Tesla's vehicle manufacturing factory is up and running, the company is planning another facility adjacent to the site. Courtesy of Tesla

Tesla has barely begun manufacturing electric vehicles at its new factory in east Travis County, and it’s already planning an expansion.

The Austin-based automaker is eyeing a 32-acre site adjacent to its auto manufacturing plant to build a nearly 1.6-million-square-foot industrial facility that would produce cathodes for battery manufacturing, as first reported by the Electrek industry website.

Tesla owns about 2,100 acres where the new 4.3-million-square-foot factory stands. The factory started producing vehicles late last year.

An application submitted earlier this month for an Austin building permit lists Colorado River Project LLC as a co-applicant for a project named “Cathode,” according to the Reuters news service. That’s the corporate name Tesla has used throughout the permitting process for the new factory. A spokeswoman for Austin Development Services Department told Reuters that the latest permit is for a Tesla cathode facility.

Reuters explains that cathodes are the most expensive component of a battery, and making them requires a lot of space and emits significant amounts of carbon dioxide.

It’s unclear when construction on the Tesla cathode facility might start and how many people it might employ. The Tesla car manufacturing plant is expected to employ at least 5,000 people.

A search of Tesla’s website found one job posting in Austin that contains the word “cathode.” The company is seeking an “energetic and engaging” quality supervisor to lead one of the first teams of quality technicians for Tesla’s “Cathode Quality Control Lab.”

“You will exercise your exceptional people skills to delegate tasks and guide personnel in developing one of Tesla’s newest manufacturing teams. Your proven record of driving improvements and agility in responding to quality excursions will enable you to set the tone for the rest of the team,” the job posting says.

Last year, Tesla moved its headquarters from Northern California to 2,100-acre site in east Travis County.

------

This article originally ran on CultureMap.

Tesla's Fremont, California, factory employs around 10,000 people and uses a fleet of robots to create the vehicles. Photo courtesy of Tesla Motors

Tesla taps Texas for new factory with construction already underway

Lone star state bound

Tesla CEO Elon Musk is putting an end to months of speculation of if the Lone Star State is to be considered for Tesla's next U.S. factory. Multiple cities including Tulsa, Oklahoma, were attempting to woo the electric car manufacturer.

But, as Musk announced this week, work is already underway on a new site in Austin. The 2,100-acre site sits near the Austin-Bergstrom International Airport. Previous reporting by numerous sources revealed that Tesla had a $5 million option to purchase the property, which has around two miles of frontage on the Colorado River. A sand and gravel mining company currently operates on the site, which is off Texas State Highway 130, just south of Harold Green Road. Google already marks the site as Tesla GigaAustin.

"Tesla is one of the most exciting and innovative companies in the world, and we are proud to welcome its team to the State of Texas," Texas Gov. Greg Abbott said in a statement. "Texas has the best workforce in the nation and we've built an economic environment that allows companies like Tesla to innovate and succeed.

"Tesla's Gigafactory Texas will keep the Texas economy the strongest in the nation and will create thousands of jobs for hard-working Texans," he continues. "I look forward to the tremendous benefits that Tesla's investment will bring to Central Texas and to the entire state."

Travis County, where the plant is located, recently approved to grant a tax break for the company that is projected to amount to $14 million in savings on property taxes over the next 10 years. The Del Valle school district, where the site is located, also approved a tax holiday for the company, granting approximately $50 million in tax rebates over the same timespan.

Tesla has promised to reinvest 10 percent of the tax rebate amount back into the community.

The company is planning to spend $1.1 billions to built a 4 to 5 million square foot factory on the site that will employ around 5,000 acres according to documents filed with Travis Country. Workers would earn an average salary of around $47,000 and have benefits and stock options. Minimum pay will be $15 per hour. The workers would not be unionized.

The factory will be company's second automotive plant in the U.S. The other is located in Fremont, California, and employed around 10,000 people.

Tesla intends to make its new Cybertruck at the facility in addition to Tesla Model Y crossovers, Model 3 sedans that are destined for delivery in the Eastern U.S. The Tesla semi truck is also slated for production at the site.

On an earnings call today, Musk said that the plant will be an "ecological paradise" and it will be open to the public.

------

This article originally ran on AutomotiveMap.

Tesla plans to manufacture its new Cybertruck at the facility, along with Tesla Model Y crossovers, the Tesla semi truck, and Model 3 sedans. Photo courtesy of Tesla Motors

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston hardtech accelerator names 8 scientists to 2025 cohort

ready, set, activate

National hardtech-focused organization Activate has named its 2025 cohort of scientists, which includes new members to Activate Houston.

The Houston hub was introduced last year, and joins others in Boston, New York, and Berkley, California—where Activate is headquartered. The organization also offers a virtual and remote cohort, known as Activate Anywhere. Collectively, the 2025 Activate Fellowship consists of 47 scientists and engineers from nine U.S. states.

This year's cohort comprises subject matter experts across various fields, including quantum, robotics, biology, agriculture, energy and direct air capture.

Activate aims to support scientists at "the outset of their entrepreneurial journey." It partners with U.S.-based funders and research institutions to support its fellows in developing high-impact technology. The fellows receive a living stipend, connections from Activate's robust network of mentors and access to a curriculum specific to the program for two years.

“Science entrepreneurship is the origin story of tomorrow’s industries,” Cyrus Wadia, CEO of Activate, said in an announcement. “The U.S. has long been a world center for science leadership and technological advancement. When it comes to solving the world’s biggest challenges, hard-tech innovation is how we unlock the best solutions. From infrastructure to energy to agriculture, these Activate Fellows are the bold thinkers who are building the next generation of science-focused companies to lead us into the future.”

The Houston fellows selected for the 2025 class include:

  • Jonathan Bessette, founder and CEO of KIRA, which uses its adaptive electrodialysis system to treat diverse water sources and reduce CO2 emissions
  • Victoria Coll Araoz, co-founder and chief science officer of Florida-based SEMION, an agricultural technology company developing pest control strategies by restoring crops' natural defenses
  • Eugene Chung, co-founder and CEO of Lift Biolabs, a biomanufacturing company developing low-cost, nanobubble-based purification reagents. Chung is completing his Ph.D. in bioengineering at Rice University.
  • Isaac Ju, co-founder of EarthFlow AI, which has developed an AI-powered platform for subsurface modeling, enabling the rapid scaling of carbon storage, geothermal energy and lithium extraction
  • Junho Lee, principal geotechnical engineer of Houston-based Deep Anchor Solutions, a startup developing innovative anchoring systems for floating renewables and offshore infrastructure
  • Sotiria (Iria) Mostrou, principal inventor at Houston-based Biosimo Chemicals, a chemical engineering startup that develops and operates processes to produce bio-based platform chemicals
  • Becca Segel, CEO and founder of Pittsburgh-based FlowCellutions, which prevents power outages for critical infrastructure such as hospitals, data centers and the grid through predictive battery diagnostics
  • Joshua Yang, CEO and co‑founder of Cambridge, Massachusetts-based Brightlight Photonics, which develops chip-scale titanium: sapphire lasers to bring cost-effective, lab-grade performance to quantum technologies, diagnostics and advanced manufacturing

The program, led locally by Houston Managing Director Jeremy Pitts, has supported 296 Activate fellows since the organization was founded in 2015. Members have gone on to raise roughly $4 billion in follow-on funding, according to Activate's website.

Activate officially named its Houston office in the Ion last year.

Charlie Childs, co-founder and CEO of Intero Biosystems, which won both the top-place finish and the largest total investment at this year's Rice Business Plan Competition, was named to the Activate Anywhere cohort. Read more about the Boston, New York, Berkley and Activate Anywhere cohorts here.

Houston team’s discovery brings solid-state batteries closer to EV use

A Better Battery

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape.

The team, led by Yan Yao, the Hugh Roy and Lillie Cranz Cullen Distinguished Professor of Electrical and Computer Engineering at UH, recently published its findings in the journal Nature Communications.

The work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

“This research solves a long-standing mystery about why solid-state batteries sometimes fail,” Yao, corresponding author of the study, said in a news release. “This discovery allows solid-state batteries to operate under lower pressure, which can reduce the need for bulky external casing and improve overall safety.”

A solid-state battery replaces liquid electrolytes found in conventional lithium-ion cells with a solid separator, according to Car and Driver. They also boast faster recharging capabilities, better safety and higher energy density.

However, when it comes to EVs, solid-state batteries are not ideal since they require high external stack pressure to stay intact while operating.

Yao’s team learned that tiny empty spaces, or voids, form within the solid-state batteries and merge into a large gap, which causes them to fail. The team found that adding small amounts of alloying elements, like magnesium, can help close the voids and help the battery continue to function. The team captured it in real-time with high-resolution videos that showed what happens inside a battery while it’s working under a scanning electron microscope.

“By carefully adjusting the battery’s chemistry, we can significantly lower the pressure needed to keep it stable,” Lihong Zhao, the first author of this work, a former postdoctoral researcher in Yao’s lab and now an assistant professor of electrical and computer engineering at UH, said in the release. “This breakthrough brings solid-state batteries much closer to being ready for real-world EV applications.”

The team says it plans to build on the alloy concept and explore other metals that could improve battery performance in the future.

“It’s about making future energy storage more reliable for everyone,” Zhao added.

The research was supported by the U.S. Department of Energy’s Battery 500 Consortium under the Vehicle Technologies Program. Other contributors were Min Feng from Brown; Chaoshan Wu, Liqun Guo, Zhaoyang Chen, Samprash Risal and Zheng Fan from UH; and Qing Ai and Jun Lou from Rice.

---

This article originally appeared on EnergyCaptialHTX.com.

Rice biotech accelerator appoints 2 leading researchers to team

Launch Pad

The Rice Biotech Launch Pad, which is focused on expediting the translation of Rice University’s health and medical technology discoveries into cures, has named Amanda Nash and Kelsey L. Swingle to its leadership team.

Both are assistant professors in Rice’s Department of Bioengineering and will bring “valuable perspective” to the Houston-based accelerator, according to Rice. 

“Their deep understanding of both the scientific rigor required for successful innovation and the commercial strategies necessary to bring these technologies to market will be invaluable as we continue to build our portfolio of lifesaving medical technologies,” Omid Veiseh, faculty director of the Launch Pad, said in a news release.

Amanda Nash

Nash leads a research program focused on developing cell communication technologies to treat cancer, autoimmune diseases and aging. She previously trained as a management consultant at McKinsey & Co., where she specialized in business development, portfolio strategy and operational excellence for pharmaceutical and medtech companies. She earned her doctorate in bioengineering from Rice and helped develop implantable cytokine factories for the treatment of ovarian cancer. She holds a bachelor’s degree in biomedical engineering from the University of Houston.

“Returning to Rice represents a full-circle moment in my career, from conducting my doctoral research here to gaining strategic insights at McKinsey and now bringing that combined perspective back to advance Houston’s biotech ecosystem,” Nash said in the release. “The Launch Pad represents exactly the kind of translational bridge our industry needs. I look forward to helping researchers navigate the complex path from discovery to commercialization.”

Kelsey L. Swingle

Swingle’s research focuses on engineering lipid-based nanoparticle technologies for drug delivery to reproductive tissues, which includes the placenta. She completed her doctorate in bioengineering at the University of Pennsylvania, where she developed novel mRNA lipid nanoparticles for the treatment of preeclampsia. She received her bachelor’s degree in biomedical engineering from Case Western Reserve University and is a National Science Foundation Graduate Research Fellow.

“What draws me to the Rice Biotech Launch Pad is its commitment to addressing the most pressing unmet medical needs,” Swingle added in the release. “My research in women’s health has shown me how innovation at the intersection of biomaterials and medicine can tackle challenges that have been overlooked for far too long. I am thrilled to join a team that shares this vision of designing cutting-edge technologies to create meaningful impact for underserved patient populations.”

The Rice Biotech Launch Pad opened in 2023. It held the official launch and lab opening of RBL LLC, a biotech venture creation studio in May. Read more here.