The Houston area is expected to employ 158,176 tech professionals this year, according to a new report by CompTIA. Photo via Getty Images.

Tech employment in the Houston metro area is expected to climb by more than two percent this year, according to a new projection.

CompTIA’s State of the Tech Workforce 2025 report forecasts the Houston area will employ 158,176 tech professionals this year, compared with an estimated 154,905 last year. That would be an increase of 2.1 percent.

These numbers take into account tech workers across all industries, not just those employed in the tech sector. Many of these professionals do work in the tech sector (40 percent), with the remainder (60 percent) employed in other sectors.

Even more impressive than the year-to-year increase is the jump in Houston-area tech employment from 2019 to 2025. During that period, tech employment grew 16.6 percent, according to the report.

The Houston area ranks eighth among major metro areas for the number of tech jobs expected to be added this year (3,271). Dallas rises to No. 1 for the most jobs expected to be added (projection of 13,997 new tech jobs in 2025), with Austin at No. 5 (7,750 new jobs) and San Antonio at No. 21 (1,617 new jobs).

On a state-by-state basis, Texas ranks first for the number of tech workers projected to be added this year (40,051)—up significantly from the 8,181 jobs estimated to be added in 2024—and second for the size of the tech workforce last year (972,747), the report says. The Lone Star State lands at No. 4 for the highest percentage (24 percent) of tech jobs expected to be added from 2025 to 2035.

Backed by a nearly $1.4 billion commitment from the state, the semiconductor industry is helping propel the growth of tech jobs in Houston and throughout Texas.

In 2023, the state launched the Texas Semiconductor Innovation Fund. The fund provides incentives to encourage semiconductor research, design and manufacturing in Texas. State lawmakers allocated $698.3 million for the fund. Another $660 million in state money will help establish semiconductor research and development centers at the University of Texas at Austin and Texas A&M University.

“Texas has the innovation, the infrastructure, and the talent to continue to lead the American resurgence in critical semiconductor manufacturing and the technologies of tomorrow,” Gov. Greg Abbott said in a release.

The Houston area is benefiting from the semiconductor boom.

For example, chip manufacturer Nvidia and electronics maker Foxconn plan to build a factory in Houston that will produce AI supercomputers.

Nvidia said in April that the AI supercomputers “are the engines of a new type of data center created for the sole purpose of processing artificial intelligence — AI factories that are the infrastructure powering a new AI industry.”

Meanwhile, tech giant Apple plans to open a 250,000-square-foot factory in Houston that will manufacture servers for its data centers in support of Apple’s AI business. The Houston plant is part of a four-year, $500 million nationwide expansion that Apple unveiled in February.

This new report doesn't include any of the country's top tech hubs. Photo by Hero Images

Houston named among top 10 cities for tech professionals

Move over, Austin

Silicon Valley, San Francisco, and Austin may grab lots of glory as American tech hubs, but Houston, Dallas, and San Antonio blast past all three of them in a new assessment of the top cities for tech workers.

Personal finance website SmartAsset combed through five data factors for 201 U.S. cities — average salary, average cost of living, concentration of tech employment, jobless rate, and average pay versus average tech pay — to come up with its 2018 ranking of the top U.S. cities for tech workers.

Houston comes in at No. 10, up from No. 15 in 2017. As SmartAsset points out, federal data shows the typical tech worker in Houston makes $94,200 a year — 75 percent more than the typical Houston worker.

"One concern, though, if you live in Houston — a bachelor's degree is no guarantee of employment," the report from SmartAsset says.

Why? About 3.6 percent of residents who have bachelor's degrees are unemployed, according to SmartAsset.

Dallas comes in at No. 3, and San Antonio ranks No. 8. Austin is No. 19 on the list, which is up from No. 20 last year.

Topping SmartAsset's ranking is Columbus, Ohio, followed by Des Moines, Iowa. It's worth noting that Silicon Valley and San Francisco didn't crack the top 25, thanks in large part to the high cost of living in that region.

---

This story originally appeared on CultureMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH receives $2.6M gift to support opioid addiction research and treatment

drug research

The estate of Dr. William A. Gibson has granted the University of Houston a $2.6 million gift to support and expand its opioid addiction research, including the development of a fentanyl vaccine that could block the drug's ability to enter the brain.

The gift builds upon a previous donation from the Gibson estate that honored the scientist’s late son Michael, who died from drug addiction in 2019. The original donation established the Michael C. Gibson Addiction Research Program in UH's department of psychology. The latest donation will establish the Michael Conner Gibson Endowed Professorship in Psychology and the Michael Conner Gibson Research Endowment in the College of Liberal Arts and Social Sciences.

“This incredibly generous gift will accelerate UH’s addiction research program and advance new approaches to treatment,” Daniel O’Connor, dean of the College of Liberal Arts and Social Sciences, said in a news release.

The Michael C. Gibson Addiction Research Program is led by UH professor of psychology Therese Kosten and Colin Haile, a founding member of the UH Drug Discovery Institute. Currently, the program produces high-profile drug research, including the fentanyl vaccine.

According to UH, the vaccine can eliminate the drug’s “high” and could have major implications for the nation’s opioid epidemic, as research reveals Opioid Use Disorder (OUD) is treatable.

The endowed professorship is combined with a one-to-one match from the Aspire Fund Challenge, a $50 million grant program established in 2019 by an anonymous donor. UH says the program has helped the university increase its number of endowed chairs and professorships, including this new position in the department of psychology.

“Our future discoveries will forever honor the memory of Michael Conner Gibson and the Gibson family,” O’Connor added in the release. “And I expect that the work supported by these endowments will eventually save many thousands of lives.”

CenterPoint and partners launch AI initiative to stabilize the power grid

AI infrastructure

Houston-based utility company CenterPoint Energy is one of the founding partners of a new AI infrastructure initiative called Chain Reaction.

Software companies NVIDIA and Palantir have joined CenterPoint in forming Chain Reaction, which is aimed at speeding up AI buildouts for energy producers and distributors, data centers and infrastructure builders. Among the initiative’s goals are to stabilize and expand the power grid to meet growing demand from data centers, and to design and develop large data centers that can support AI activity.

“The energy infrastructure buildout is the industrial challenge of our generation,” Tristan Gruska, Palantir’s head of energy and infrastructure, says in a news release. “But the software that the sector relies on was not built for this moment. We have spent years quietly deploying systems that keep power plants running and grids reliable. Chain Reaction is the result of building from the ground up for the demands of AI.”

CenterPoint serves about 7 million customers in Texas, Indiana, Minnesota and Ohio. After Hurricane Beryl struck Houston in July 2024, CenterPoint committed to building a resilient power grid for the region and chose Palantir as its “software backbone.”

“Never before have technology and energy been so intertwined in determining the future course of American innovation, commercial growth, and economic security,” Jason Wells, chairman, president and CEO of CenterPoint, added in the release.

In November, the utility company got the go-ahead from the Public Utility Commission of Texas for a $2.9 billion upgrade of its Houston-area power grid. CenterPoint serves 2.9 million customers in a 12-county territory anchored by Houston.

A month earlier, CenterPoint launched a $65 billion, 10-year capital improvement plan to support rising demand for power across all of its service territories.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Houston researchers develop material to boost AI speed and cut energy use

ai research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.