Houston — home to the Texas Medical Center — has made the cut for top life science metros. Photo via Getty Images

Of the top 25 United States metros ranked as the best for life science, Houston came in at lucky No. 13.

CommercialCafe issued a report this month ranking the top 25 U.S. cities for life science, factoring in volume of life science patents, number of life science establishments, size of workforce, educational institutions, office market, and more.

Houston stood out on the report for a few metrics. It might not be surprising, as Houston is home to the world's largest medical center, but the city boasts the 10th largest workforce with 5,100 workers employed in industry related occupations, the report found. Additionally, the city ranked:

  • No. 8 for life science education — more than 860,000 area residents aged 25 years or older hold a bachelor’s degree in an industry related field.
  • No. 9 for life science establishments — which has increased 23 percent since 2018 to a total of nearly 3,300.
  • No. 9 for life science square footage added — with roughly 840,000 square feet of new life sciences projects currently in development

As positive as the report finds Houston's life science market, the ranking represents a decrease in ranking compared to 2022 where Houston scored a spot in the top 10. In fact, Houston can't even claim the top spot in the Lone Star State. No Texas cities made the top 10, but the Dallas area secured the No. 11 ranking. Dallas was also ranked highly for its talent pool.

Meanwhile in central Texas, Austin claimed the No. 22 spot. The full ranking is below.

www.commercialcafe.com

Conveniently, CBRE, which also ranks the top life science markets every year, agrees with CommercialCafe's ranking of Houston. The 2023 report placed Houston at No. 13, which is exactly where the Bayou City ranked in 2022. However, according to CBRE, Houston ranks ahead of Dallas and Austin, which both still claimed rankings in the top 25.

With a transparent approach to hiring and candidate development, you will keep the employer brand intact and maintain recruiting power. Photo via Getty Images

Houston expert: How to avoid 'ghost hiring' while attracting top talent

guest column

One of the latest HR terms grabbing attention today is “ghost hiring.” This is a practice where businesses post positions online, even interviewing candidates, with no intention to fill them. In fact, the role may already have been filled or it may not exist.

Usually, an applicant applies for the job, yet never hears back. However, they may be contacted by the recruiter, only to learn the offer is revoked or a recruiter ghosts them after a first-round interview.

Applicants who are scouring job sites for the ideal position can become discouraged by ghost hiring. Employers do not usually have any ill intentions of posting ghost jobs and talking with candidates. Employers may have innocently forgotten to take down the listing after filling the position.

Some employers may leave positions up to expand their talent pool. While others who are open to hiring new employees, even if they do not match the role, may practice ghost hiring when they want a pool of applicants to quickly pull from when the need arises. Finally, some employers post job roles to make it look like the company is experiencing growth.

When employers participate in ghost hiring practices, job candidates can become frustrated, hurting the employer brand and, thus, future recruiting efforts. Even with the tight labor market and employee turnover, it is best not to have an evergreen posting if there is no intention to hire respondents.

There are several ways employers can engage candidates and, likewise, build a talent pool without misleading job seekers.

Network

A recruiter at their core is a professional networker. This is a skill that many have honed through the years, and it continues to evolve through social media channels. While many recruiters lean on social media, you should not discount meeting people face-to-face. There is power in promoting your organization at professional meetings, alumni groups and civic organizations. Through these avenues, many potential candidates will elect for you to keep them in mind for future opportunities.

Employee Referrals

When recruiters want to deepen their talent pool, they cannot discount the employee referral. Simply letting employees know and clearly stating the exploratory nature of the conversation can lead to stellar results. Employees understand the organization, its culture and expectations, so they are more likely to refer the company to someone who would be a good fit and reflect highly on them.

Alternative Candidates

In recent years, organizations and recruiters are more dialed into skills-first recruiting practices. Creating job postings that emphasize the skill sets needed rather than the years of experience, specific college degree or previous job titles, can yield a crop of candidates who may be more agile and innovative than others. Fostering relationships with people who fit unique skills needed within the organization can help you develop a deeper bench of candidates.

Contingent Workforce

Part-time workers, freelancers, and independent contractors are a great way to build connections and the talent pool. These workers and their skills are known entities, plus they know the organization, which makes them valuable candidates for open roles. If their expertise is needed on a regular basis, it is easier to have open conversations about a potential expansion of their duties or offer full-time work.

Internal Talent

Human resources and recruiters need to work with managers and leadership to intimately know what kind of talent lies within their own organization. Current employees may have the strengths, skills, and capabilities to fill new positions or roles. Through conversations with employees and their managers, you can identify who can flex different skills, but even more importantly, the ambition to grow within the company.

In every instance, it is crucial for recruiters and hiring managers to be transparent in their intentions. Communicating within your network that you are always looking for great talent to fill future roles sets the tone. When communicating with candidates, whether there is a pressing job opportunity or not, be clear from the onset regarding your intentions for hire. With a transparent approach to hiring and candidate development, you will keep the employer brand intact and maintain recruiting power.

------

Jaune Little is a director of recruiting services with Insperity.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

​Planned UT Austin med center, anchored by MD Anderson, gets $100M gift​

med funding

The University of Texas at Austin’s planned multibillion-dollar medical center, which will include a hospital run by Houston’s University of Texas MD Anderson Cancer Center, just received a $100 million boost from a billionaire husband-and-wife duo.

Tench Coxe, a former venture capitalist who’s a major shareholder in chipmaking giant Nvidia, and Simone Coxe, co-founder and former CEO of the Blanc & Otus PR firm, contributed the $100 million—one of the largest gifts in UT history. The Coxes live in Austin.

“Great medical care changes lives,” says Simone Coxe, “and we want more people to have access to it.”

The University of Texas System announced the medical center project in 2023 and cited an estimated price tag of $2.5 billion. UT initially said the medical center would be built on the site of the Frank Erwin Center, a sports and entertainment venue on the UT Austin campus that was demolished in 2024. The 20-acre site, north of downtown and the state Capitol, is near Dell Seton Medical Center, UT Dell Medical School and UT Health Austin.

Now, UT officials are considering a bigger, still-unidentified site near the Domain mixed-use district in North Austin, although they haven’t ruled out the Erwin Center site. The Domain development is near St. David’s North Medical Center.

As originally planned, the medical center would house a cancer center built and operated by MD Anderson and a specialty hospital built and operated by UT Austin. Construction on the two hospitals is scheduled to start this year and be completed in 2030. According to a 2025 bid notice for contractors, each hospital is expected to encompass about 1.5 million square feet, meaning the medical center would span about 3 million square feet.

Features of the MD Anderson hospital will include:

  • Inpatient care
  • Outpatient clinics
  • Surgery suites
  • Radiation, chemotherapy, cell, and proton treatments
  • Diagnostic imaging
  • Clinical drug trials

UT says the new medical center will fuse the university’s academic and research capabilities with the medical and research capabilities of MD Anderson and Dell Medical School.

UT officials say priorities for spending the Coxes’ gift include:

  • Recruiting world-class medical professionals and scientists
  • Supporting construction
  • Investing in technology
  • Expanding community programs that promote healthy living and access to care

Tench says the opportunity to contribute to building an institution from the ground up helped prompt the donation. He and others say that thanks to MD Anderson’s participation, the medical center will bring world-renowned cancer care to the Austin area.

“We have a close friend who had to travel to Houston for care she should have been able to get here at home. … Supporting the vision for the UT medical center is exactly the opportunity Austin needed,” he says.

The rate of patients who leave the Austin area to seek care for serious medical issues runs as high as 25 percent, according to UT.

New Rice Brain Institute partners with TMC to award inaugural grants

brain trust

The recently founded Rice Brain Institute has named the first four projects to receive research awards through the Rice and TMC Neuro Collaboration Seed Grant Program.

The new grant program brings together Rice faculty with clinicians and scientists at The University of Texas Medical Branch, Baylor College of Medicine, UTHealth Houston and The University of Texas MD Anderson Cancer Center. The program will support pilot projects that address neurological disease, mental health and brain injury.

The first round of awards was selected from a competitive pool of 40 proposals, and will support projects that reflect Rice Brain Institute’s research agenda.

“These awards are meant to help teams test bold ideas and build the collaborations needed to sustain long-term research programs in brain health,” Behnaam Aazhang, Rice Brain Institute director and co-director of the Rice Neuroengineering Initiative, said in a news release.

The seed funding has been awarded to the following principal investigators:

  • Kevin McHugh, associate professor of bioengineering and chemistry at Rice, and Peter Kan, professor and chair of neurosurgery at the UTMB. McHugh and Kan are developing an injectable material designed to seal off fragile, abnormal blood vessels that can cause life-threatening bleeding in the brain.
  • Jerzy Szablowski, assistant professor of bioengineering at Rice, and Jochen Meyer, assistant professor of neurology at Baylor. Szablowski and Meyer are leading a nonsurgical, ultrasound approach to deliver gene-based therapies to deep brain regions involved in seizures to control epilepsy without implanted electrodes or invasive procedures.
  • Juliane Sempionatto, assistant professor of electrical and computer engineering at Rice, and Aaron Gusdon, associate professor of neurosurgery at UTHealth Houston. Sempionatto and Gusdon are leading efforts to create a blood test that can identify patients at high risk for delayed brain injury following aneurysm-related hemorrhage, which could lead to earlier intervention and improved outcomes.
  • Christina Tringides, assistant professor of materials science and nanoengineering at Rice, and Sujit Prabhu, professor of neurosurgery at MD Anderson, who are working to reduce the risk of long-term speech and language impairment during brain tumor removal by combining advanced brain recordings, imaging and noninvasive stimulation.

The grants were facilitated by Rice’s Educational and Research Initiatives for Collaborative Health (ENRICH) Office. Rice says that the unique split-funding model of these grants could help structure future collaborations between the university and the TMC.

The Rice Brain Institute launched this fall and aims to use engineering, natural sciences and social sciences to research the brain and reduce the burden of neurodegenerative, neurodevelopmental and mental health disorders. Last month, the university's Shepherd School of Music also launched the Music, Mind and Body Lab, an interdisciplinary hub that brings artists and scientists together to study the "intersection of the arts, neuroscience and the medical humanities." Read more here.

Your data center is either closer than you think or much farther away

houston voices

A new study shows why some facilities cluster in cities for speed and access, while others move to rural regions in search of scale and lower costs. Based on research by Tommy Pan Fang (Rice Business) and Shane Greenstein (Harvard).

Key findings:

  • Third-party colocation centers are physical facilities in close proximity to firms that use them, while cloud providers operate large data centers from a distance and sell access to virtualized computing resources as on‑demand services over the internet.
  • Hospitals and financial firms often require urban third-party centers for low latency and regulatory compliance, while batch processing and many AI workloads can operate more efficiently from lower-cost cloud hubs.
  • For policymakers trying to attract data centers, access to reliable power, water and high-capacity internet matter more than tax incentives.

Recent outages and the surge in AI-driven computing have made data center siting decisions more consequential than ever, especially as energy and water constraints tighten. Communities invest public dollars on the promise of jobs and growth, while firms weigh long-term commitments to land, power and connectivity.

Against that backdrop, a critical question comes into focus: Where do data centers get built — and what actually drives those decisions?

A new study by Tommy Pan Fang (Rice Business) and Shane Greenstein (Harvard Business School) provides the first large-scale statistical analysis of data center location strategies across the United States. It offers policymakers and firms a clearer starting point for understanding how different types of data centers respond to economic and strategic incentives.

Forthcoming in the journal Strategy Science, the study examines two major types of infrastructure: third-party colocation centers that lease server space to multiple firms, and hyperscale cloud centers owned by providers like Amazon, Google and Microsoft.

Two Models, Two Location Strategies

The study draws on pre-pandemic data from 2018 and 2019, a period of relative geographic stability in supply and demand. This window gives researchers a clean baseline before remote work, AI demand and new infrastructure pressures began reshaping internet traffic patterns.

The findings show that data centers follow a bifurcated geography. Third-party centers cluster in dense urban markets, where buyers prioritize proximity to customers despite higher land and operating costs. Cloud providers, by contrast, concentrate massive sites in a small number of lower-density regions, where electricity, land and construction are cheaper and economies of scale are easier to achieve.

Third-party data centers, in other words, follow demand. They locate in urban markets where firms in finance, healthcare and IT value low latency, secure storage, and compliance with regulatory standards.

Using county-level data, the researchers modeled how population density, industry mix and operating costs predict where new centers enter. Every U.S. metro with more than 700,000 residents had at least one third-party provider, while many mid-sized cities had none.

ImageThis pattern challenges common assumptions. Third-party facilities are more distributed across urban America than prevailing narratives suggest.

Customer proximity matters because some sectors cannot absorb delay. In critical operations, even slight pauses can have real consequences. For hospital systems, lag can affect performance and risk exposure. And in high-frequency trading, milliseconds can determine whether value is captured or lost in a transaction.

“For industries where speed is everything, being too far from the physical infrastructure can meaningfully affect performance and risk,” Pan Fang says. “Proximity isn’t optional for sectors that can’t absorb delay.”

The Economics of Distance

For cloud providers, the picture looks very different. Their decisions follow a logic shaped primarily by cost and scale. Because cloud services can be delivered from afar, firms tend to build enormous sites in low-density regions where power is cheap and land is abundant.

These facilities can draw hundreds of megawatts of electricity and operate with far fewer employees than urban centers. “The cloud can serve almost anywhere,” Pan Fang says, “so location is a question of cost before geography.”

The study finds that cloud infrastructure clusters around network backbones and energy economics, not talent pools. Well-known hubs like Ashburn, Virginia — often called “Data Center Alley” — reflect this logic, having benefited from early network infrastructure that made them natural convergence points for digital traffic.

Local governments often try to lure data centers with tax incentives, betting they will create high-tech jobs. But the study suggests other factors matter more to cloud providers, including construction costs, network connectivity and access to reliable, affordable electricity.

When cloud centers need a local presence, distance can sometimes become a constraint. Providers often address this by working alongside third-party operators. “Third-party centers can complement cloud firms when they need a foothold closer to customers,” Pan Fang says.

That hybrid pattern — massive regional hubs complementing strategic colocation — may define the next phase of data center growth.

Looking ahead, shifts in remote work, climate resilience, energy prices and AI-driven computing may reshape where new facilities go. Some workloads may move closer to users, while others may consolidate into large rural hubs. Emerging data-sovereignty rules could also redirect investment beyond the United States.

“The cloud feels weightless,” Pan Fang says, “but it rests on real choices about land, power and proximity.”

---

This article originally appeared on Rice Business Wisdom. Written by Scott Pett.

Pan Fang and Greenstein (2025). “Where the Cloud Rests: The Economic Geography of Data Centers,” forthcoming in Strategy Science.