Halliburton Labs has announced the addition of three clean energy tech companies. Photo courtesy of Halliburton

Halliburton has again added a handful of energy tech startups to its Houston-based incubator.

Three companies — Matrix Sensors, Renew Power Systems, and SunGreenH2 — have joined Halliburton Labs as its newest clean energy participants.

“Companies across the energy landscape are interested in scalable innovations that improve the cost, reliability, and sustainability of energy,” says Managing Director Dale Winger in the news release. “Our tailored program combines expert support, access to a global network, and the physical resources for participants to scale. We’re excited to help these companies accelerate their market traction.”

Halliburton, a provider of energy equipment and services, launched Halliburton Labs in 2020. Last September was the incubator's last cohort addition. The next Halliburton Labs Finalists Pitch Day is Friday, January 27, at the Ion. The event will include pitches from 10 innovative, early-stage energy tech companies. Registration is open for the event.

Here are details, according to Halliburton, about the three new startups at the incubator.

Matrix Sensors

Using a new class of gas-adsorbing materials known as metal-organic frameworks to develop the world’s first quantitative gas sensor on a chip, Matrix Sensors has created a touch-free technology that enables advancements in sensor size, power, cost, and performance to address limitations of current gas sensor technologies, which require manual calibration every six months. The company is based in San Diego, California.

“With Halliburton’s global reach, we can apply our technology to some of the biggest problems facing the energy sector today, including CO2 sensors for energy efficient buildings and methane sensors for leak detection,” says Matrix Sensors CEO Steve Yamamoto in the release.

Renew Power Systems

RPSi, based in Minneapolis, Minnesota, is a clean-tech company that develops hardware and software solutions that enable flexible and sustainable grid infrastructure. RPSi uses power electronics to connect renewable energy resources, such as wind and solar, with each other and the grid.

“Our mission is to help change the way the world generates and distributes energy,” says CEO Zach Emond in the release. “With RPSi technology, a diverse range of domestic and global communities will benefit from the acceleration of renewable energy resources that work with new and existing grid infrastructure and improve access to affordable, sustainable, and resilient electricity.”

SunGreenH2

Singapore-based SunGreenH2 builds high-performance hardware for electrolyzer cells, stacks, and systems that increase hydrogen production, decrease energy use, and reduce platinum group metals use. The company supplies hardware components for alkaline and proton-exchange membrane electrolyzers. Its modular, high-efficiency anion exchange membrane (AEM) electrolyzer stack, which is being commercialized, uses renewable power to produce low-cost green hydrogen for industries, transport, and energy storage.

“We are excited to unlock the future of green hydrogen production. With the help of Halliburton’s engineering and manufacturing expertise, we plan to commercialize and roll out our product in major international markets,” says Tulika Raj, co-founder and CEO of the company, in the release.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston team develops low-cost device to treat infants with life-threatening birth defect

infant innovation

A team of engineers and pediatric surgeons led by Rice University’s Rice360 Institute for Global Health Technologies has developed a cost-effective treatment for infants born with gastroschisis, a congenital condition in which intestines and other organs are developed outside of the body.

The condition can be life-threatening in economically disadvantaged regions without access to equipment.

The Rice-developed device, known as SimpleSilo, is “simple, low-cost and locally manufacturable,” according to the university. It consists of a saline bag, oxygen tubing and a commercially available heat sealer, while mimicking the function of commercial silo bags, which are used in high-income countries to protect exposed organs and gently return them into the abdominal cavity gradually.

Generally, a single-use bag can cost between $200 and $300. The alternatives that exist lack structure and require surgical sewing. This is where the SimpleSilo comes in.

“We focused on keeping the design as simple and functional as possible, while still being affordable,” Vanshika Jhonsa said in a news release. “Our hope is that health care providers around the world can adapt the SimpleSilo to their local supplies and specific needs.”

The study was published in the Journal of Pediatric Surgery, and Jhonsa, its first author, also won the 2023 American Pediatric Surgical Association Innovation Award for the project. She is a recent Rice alumna and is currently a medical student at UTHealth Houston.

Bindi Naik-Mathuria, a pediatric surgeon at UTMB Health, served as the corresponding author of the study. Rice undergraduates Shreya Jindal and Shriya Shah, along with Mary Seifu Tirfie, a current Rice360 Global Health Fellow, also worked on the project.

In laboratory tests, the device demonstrated a fluid leakage rate of just 0.02 milliliters per hour, which is comparable to commercial silo bags, and it withstood repeated disinfection while maintaining its structure. In a simulated in vitro test using cow intestines and a mock abdominal wall, SimpleSilo achieved a 50 percent reduction of the intestines into the simulated cavity over three days, also matching the performance of commercial silo bags. The team plans to conduct a formal clinical trial in East Africa.

“Gastroschisis has one of the biggest survival gaps from high-resource settings to low-resource settings, but it doesn’t have to be this way,” Meaghan Bond, lecturer and senior design engineer at Rice360, added in the news release. “We believe the SimpleSilo can help close the survival gap by making treatment accessible and affordable, even in resource-limited settings.”

Oxy's $1.3B Texas carbon capture facility on track to​ launch this year

gearing up

Houston-based Occidental Petroleum is gearing up to start removing CO2 from the atmosphere at its $1.3 billion direct air capture (DAC) project in the Midland-Odessa area.

Vicki Hollub, president and CEO of Occidental, said during the company’s recent second-quarter earnings call that the Stratos project — being developed by carbon capture and sequestration subsidiary 1PointFive — is on track to begin capturing CO2 later this year.

“We are immensely proud of the achievements to date and the exceptional record of safety performance as we advance towards commercial startup,” Hollub said of Stratos.

Carbon dioxide captured by Stratos will be stored underground or be used for enhanced oil recovery.

Oxy says Stratos is the world’s largest DAC facility. It’s designed to pull 500,000 metric tons of carbon dioxide from the air and either store it underground or use it for enhanced oil recovery. Enhanced oil recovery extracts oil from unproductive reservoirs.

Most of the carbon credits that’ll be generated by Stratos through 2030 have already been sold to organizations such as Airbus, AT&T, All Nippon Airways, Amazon, the Houston Astros, the Houston Texans, JPMorgan, Microsoft, Palo Alto Networks and TD Bank.

The infrastructure business of investment manager BlackRock has pumped $550 million into Stratos through a joint venture with 1PointFive.

As it gears up to kick off operations at Stratos, Occidental is also in talks with XRG, the energy investment arm of the United Arab Emirates-owned Abu Dhabi National Oil Co., to form a joint venture for the development of a DAC facility in South Texas. Occidental has been awarded up to $650 million from the U.S. Department of Energy to build the South Texas DAC hub.

The South Texas project, to be located on the storied King Ranch, will be close to industrial facilities and energy infrastructure along the Gulf Coast. Initially, the roughly 165-square-mile site is expected to capture 500,000 metric tons of carbon dioxide per year, with the potential to store up to 3 billion metric tons of CO2 per year.

“We believe that carbon capture and DAC, in particular, will be instrumental in shaping the future energy landscape,” Hollub said.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.