Students and faculty sponsors work in tandem to design and implement a research or scholarly project, and its important to support the student aspect of the equation. Graphic by Miguel Tovar/University of Houston

Do you remember the feeling you had the first time sitting at the wheel of a car? Were you overcome by the feeling of excitement, anticipation, fear, or perhaps a combination of them all? For many, obtaining a driver’s license is a rite of passage; a symbol that you are equipped with both the knowledge and skill of how to safely operate a motor vehicle. This achievement, however, would not have been made possible without the sacrifice of devoting hours to driver’s education and training under a supervisor.

Forging new paths

By the same token, college students who have dedicated years of study in various academic fields may also be ambivalent about conducting research. They will be in dire need of an experienced researcher’s guidance as they navigate down the unfamiliar road of academic research. It is their responsibility to help shape the student’s research interests and forge new paths.

By fostering student-led research, faculty sponsors can assist students by aligning their educational experiences with their career goals. This positions them for compelling careers in academic research.

Student at the wheel

Before a student can be placed in the driver’s seat of their own research protocol, they must be fully equipped with the right tools. If not, they will begin this journey without clear direction. Such was the case of several students at an unnamed university who conducted more than minimal risk studies without IRB approval.

The students started the protocol but were advised by their faculty sponsor that IRB approval wasn’t necessary before conducting research. One of the students rode in ambulances collecting data. They published their findings and even graduated before this was brought to the attention of the university’s Office of Compliance. This is a clear case of noncompliance and the severity of this issue is similar to driving a car without a license.

The Institutional Review Board (IRB) is the governing entity for human subject research. Their role isn’t primarily a research review process. It ensures that human subjects are treated ethically and that their rights are protected. This brought up issues of consent, confidentiality, and potential risk to human subjects and was an example of significant non-compliance.

Federal regulations and university policy mandate IRB approval for research involving human subjects. The requisite applies to faculty, staff and students. The availability of options may create more questions than answers when submitting their first student-led research protocol.

Mapping it out

The University of Houston has taken steps to manage research compliance and optimize student success. It established an Institutional Review Board that reviews only student-led protocols. It’s unique in that very few institutions have this sort of program available. In the two years since its inception, the program has become a transformative resource for both students and their faculty advisors.

Faculty and student protocols are typically grouped together. However, the UH Student IRB Program gives them a single point of contact for IRB-related concerns and individualized support.

The UH Office of Research Integrity and Oversight (RIO) has established an infrastructure to support student-led research through their pre-IRB review process. Students are encouraged to drop by to seek advice or brainstorm with a coordinator. Services, training and educational materials, such as the Faculty Sponsor Manual, are also available to support faculty sponsors.

The submission process can be pretty daunting. Kirstin Holzschuh, executive director of RIO, mentioned that students are unfamilar with the IRB requirements and process. As a result, their protocols would often be sent back for significant revisions. The pre-review system helps eliminate the possibility of their protocols getting stuck in the review process.

Representatives from this office regularly interface with the UH research community. They travel to various colleges and departments across campus and guest lecture on the IRB submission process. They also talk about the ethics of conducting research with human subjects.

Students and faculty sponsors work in tandem to design and implement a research or scholarly project. Therefore, it’s imperative to cultivate an environment where student researchers feel informed and supported by their advisors and the UH community.

------

This article originally appeared on the University of Houston's The Big Idea. Nitiya Spearman, the author of this post, is the internal communications coordinator for the UH Division of Research.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

TMC, Memorial Hermann launch partnership to spur new patient care technologies

medtech partnership

Texas Medical Center and Memorial Hermann Health System have launched a new collaboration for developing patient care technology.

Through the partnership, Memorial Hermann employees and physicians will now be able to participate in the TMC Center for Device Innovation (CDI), which will assist them in translating product innovation ideas into working prototypes. The first group of entrepreneurs will pitch their innovations in early 2026, according to a release from TMC.

“Memorial Hermann is excited to launch this new partnership with the TMC CDI,” Ini Ekiko Thomas, vice president of information technology at Memorial Hermann, said in the news release. “As we continue to grow (a) culture of innovation, we look forward to supporting our employees, affiliated physicians and providers in new ways.”

Mentors from Memorial Hermann, TMC Innovation and industry experts with specialties in medicine, regulatory strategy, reimbursement planning and investor readiness will assist with the program. The innovators will also gain access to support systems like product innovation and translation strategy, get dedicated engineering and machinist resources and personal workbench space at the CDI.

“The prototyping facilities and opportunities at TMC are world-class and globally recognized, attracting innovators from around the world to advance their technologies,” Tom Luby, chief innovation officer at TMC Innovation Factor, said in the release.

Memorial Hermann says the partnership will support its innovation hub’s “pilot and scale approach” and hopes that it will extend the hub’s impact in “supporting researchers, clinicians and staff in developing patentable, commercially viable products.”

“We are excited to expand our partnership with Memorial Hermann and open the doors of our Center for Device Innovation to their employees and physicians—already among the best in medical care,” Luby added in the release. “We look forward to seeing what they accomplish next, utilizing our labs and gaining insights from top leaders across our campus.”

Google to invest $40 billion in AI data centers in Texas

Google is investing a huge chunk of money in Texas: According to a release, the company will invest $40 billion on cloud and artificial intelligence (AI) infrastructure, with the development of new data centers in Armstrong and Haskell counties.

The company announced its intentions at a meeting on November 14 attended by federal, state, and local leaders including Gov. Greg Abbott who called it "a Texas-sized investment."

Google will open two new data center campuses in Haskell County and a data center campus in Armstrong County.

Additionally, the first building at the company’s Red Oak campus in Ellis County is now operational. Google is continuing to invest in its existing Midlothian campus and Dallas cloud region, which are part of the company’s global network of 42 cloud regions that deliver high-performance, low-latency services that businesses and organizations use to build and scale their own AI-powered solutions.

Energy demands

Google is committed to responsibly growing its infrastructure by bringing new energy resources onto the grid, paying for costs associated with its operations, and supporting community energy efficiency initiatives.

One of the new Haskell data centers will be co-located with — or built directly alongside — a new solar and battery energy storage plant, creating the first industrial park to be developed through Google’s partnership with Intersect and TPG Rise Climate announced last year.

Google has contracted to add more than 6,200 megawatts (MW) of net new energy generation and capacity to the Texas electricity grid through power purchase agreements (PPAs) with energy developers such as AES Corporation, Enel North America, Intersect, Clearway, ENGIE, SB Energy, Ørsted, and X-Elio.

Water demands

Google’s three new facilities in Armstrong and Haskell counties will use air-cooling technology, limiting water use to site operations like kitchens. The company is also contributing $2.6 million to help Texas Water Trade create and enhance up to 1,000 acres of wetlands along the Trinity-San Jacinto Estuary. Google is also sponsoring a regenerative agriculture program with Indigo Ag in the Dallas-Fort Worth area and an irrigation efficiency project with N-Drip in the Texas High Plains.

In addition to the data centers, Google is committing $7 million in grants to support AI-related initiatives in healthcare, energy, and education across the state. This includes helping CareMessage enhance rural healthcare access; enabling the University of Texas at Austin and Texas Tech University to address energy challenges that will arise with AI, and expanding AI training for Texas educators and students through support to Houston City College.

---

This article originally appeared on CultureMap.com.

TMCi names 11 global startups to latest HealthTech Accelerator cohort

new class

Texas Medical Center Innovation has named 11 medtech startups from around the world to its latest HealthTech Accelerator cohort.

Members of the accelerator's 19th cohort will participate in the six-month program, which kicked off this month. They range from startups developing on-the-go pelvic floor monitoring to 3D-printed craniofacial and orthopedic implants. Each previously participated in TMCi's bootcamp before being selected to join the accelerator. Through the HealthTech Accelerator, founders will work closely with TMC specialists, researchers, top-tier hospital experts and seasoned advisors to help grow their companies and hone their clinical trials, intellectual property, fundraising and more.

“This cohort of startups is tackling some of today’s most pressing clinical challenges, from surgery and respiratory care to diagnostics and women’s health," Tom Luby, chief innovation officer at Texas Medical Center, said in a news release. "At TMC, we bring together the minds behind innovation—entrepreneurs, technology leaders, and strategic partners—to help emerging companies validate, scale, and deliver solutions that make a real difference for patients here and around the world. We look forward to seeing their progress and global impact through the HealthTech Accelerator and the support of our broader ecosystem.”

The 2025 HealthTech Accelerator cohort includes:

  • Houston-based Respiree, which has created an all-in-one cardiopulmonary platform with wearable sensors for respiratory monitoring that uses AI to track breathing patterns and detect early signs of distress
  • College Station-based SageSpectra, which designs an innovative patch system for real-time, remote monitoring of temperature and StO2 for assessing vascular occlusion, infection, and other surgical flap complications
  • Austin-based Dynamic Light, which has developed a non-invasive imaging technology that enables surgeons to visualize blood flow in real-time without the need for traditional dyes
  • Bangkok, Thailand-based OsseoLabs, which develops AI-assisted, 3D-printed patient-specific implants for craniofacial and orthopedic surgeries
  • Sydney, Australia-based Roam Technologies, which has developed a portable oxygen therapy system (JUNO) that provides real-time oxygen delivery optimization for patients with chronic conditions
  • OptiLung, which develops 3D-printed extracorporeal blood oxygenation devices designed to optimize blood flow and reduce complications
  • Bengaluru, India-based Dozee, which has created a smart remote patient monitor platform that uses under-the-mattress bed sensors to capture vital signs through continuous monitoring
  • Montclair, New Jersey-based Endomedix, which has developed a biosurgical fast-acting absorbable hemostat designed to eliminate the risk of paralysis and reoperation due to device swelling
  • Williston, Vermont-based Xander Medical, which has designed a biomechanical innovation that addresses the complications and cost burdens associated with the current methods of removing stripped and broken surgical screws
  • Salt Lake City, Utah-based Freyya, which has developed an on-the-go pelvic floor monitoring and feedback device for people with pelvic floor dysfunction
  • The Netherlands-based Scinvivo, which has developed optical imaging catheters for bladder cancer diagnostics