Houston-based VineSleuth created a custom algorithm to match you with new wines based on wines you've had in the past. Courtesy of VineSleuth

Amy Gross wants to find you the perfect wine. In fact, she wants it so much, she built her company, VineSleuth, around the concept that technology and machine learning could find the best wine to match individual palates.

VineSleuth's custom algorithm is backed by research from sensory scientists at Cornell University, and relies on both data collection and machine learning to determine specific wines that will match an individual customer's tastes. Flavor profiles from thousands of wines are incorporated into her database, and none of those are based on the typical wine scores you'll see in magazines or reviews of wines.

"We have a team that tastes and analyzes wines and inputs their findings. Then, we have a team that codes all of that data," she says.

VineSleuth's technology can be easily overlaid on a restaurant, grocery store, or other vendor's existing web platform or app to provide a tailor-made experience for customers.

"Take a grocery store setting for example," says Gross. "A customer logs into the store using their loyalty card, and their past wine purchases come up. Our technology can analyze those and point to different selections in the store's inventory they'll enjoy."

Think of it as using big data and machine learning to deliver big returns for wine drinkers.

Gross has been deliberate and incremental in how she's grown her company, and she just got a major boost: back in September, she won the 2018 Start Here Now competition, a combination business pitch event and incubator aimed at encouraging women entrepreneurs. She took home the $10,000 Silicon Valley Bank Grand Prize, as well as an app-design concept prize to help her improve the app she created, and a media and PR consultation.

"It was such an affirmation," she says. "To have them validate our work and my future plans."

Planting the seed
It was a slow and steady growth for Gross, who started work on VineSleuth in 2011. But her wine journey started before that.

"My now-husband asked me out on a date, and I'd just graduated college," she says. "I wanted to be sophisticated, so I ordered the house chardonnay. Well, after four or five dates, I started paying attention to what I was drinking, and I developed my palate."

She and her husband and friends of theirs enjoyed exploring wine together, and on a trip to Napa in 2009, Gross noticed something. All six of them were drinking the same wines — mostly Cabernet Sauvignons from Oakville — but they had remarkably different reactions to them.

"I thought, wouldn't it be great if there were an app that told me what I wanted, not what was 'good?'" Gross says.

While she wasn't sure then how to create such an app, she knew she needed to build up her wine knowledge. She started learning about wine in earnest and launched a wine blog. That gave her access to wine vendors and wine makers.

And then, several things happened in steps. Her brother-in-law wrote a basic algorithm that would collect taste profiles and other details from wines, but Gross needed something more. A neighbor who was an applied mathematician took that original algorithm and built on it.

"When I felt brave enough to show it, I shared it with the owners of some wineries I'd developed a business relationship with in the Finger Lakes," says Gross. "They loved the idea, and it turns out one of the winemaker's wife was a sensory scientist at Cornell. At every key place along building this business, it's been about relationships."

Still fermenting
Gross did create an app, but she admits it's not quite where she wants it to be, so she'll likely tweak it over the coming year. In the meantime, she's focused on the B2B future of VineSleuth. While she says the technology her team has created is currently being used for wine, she knows it's possible to take it and expand its capabilities to beer, chocolate, spirits and other consumables.

Building the business has been both an adventure and a learning curve for Gross, whose background is in journalism and PR. But even though she doesn't come from the technology or STEM side, she says her journalism work made her a great researcher – which is exactly what she needed to build VineSleuth. She's also a driven and detail-oriented project manager.

"My team once called me the den mother, keeping everyone on track," she laughed. "And in a way, I am. But I'm also watching the future of AI happening in front me and I really love hanging out with the brilliant people on my team. This is a blast."


Amy Gross is also working on a consumer-facing app, called Wine4Me, that helps users keep track of their favorite wines and gives recommendations for new wines. Courtesy of VineSleuth

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH student earns prestigious award for cancer vaccine research

up-and-comer

Cole Woody, a biology major in the College of Natural Sciences and Mathematics at the University of Houston, has been awarded a Barry Goldwater Scholarship, becoming the first sophomore in UH history to earn the prestigious prize for research in natural sciences, mathematics and engineering.

Woody was recognized for his research on developing potential cancer vaccines through chimeric RNAs. The work specifically investigates how a vaccine can more aggressively target cancers.

Woody developed the MHCole Pipeline, a bioinformatic tool that predicts peptide-HLA binding affinities with nearly 100 percent improvement in data processing efficiency. The MHCole Pipeline aims to find cancer-specific targets and develop personalized vaccines. Woody is also a junior research associate at the UH Sequencing Core and works in Dr. Steven Hsesheng Lin’s lab at MD Anderson Cancer Center.

“Cole’s work ethic and dedication are unmatched,” Preethi Gunaratne, director of the UH Sequencing Core and professor of Biology & Biochemistry at NSM, said in a news release. “He consistently worked 60 to 70 hours a week, committing himself to learning new techniques and coding the MHCole pipeline.”

Woody plans to earn his MD-PhD and has been accepted into the Harvard/MIT MD-PhD Early Access to Research Training (HEART) program. According to UH, recipients of the Goldwater Scholarship often go on to win various nationally prestigious awards.

"Cole’s ability to independently design and implement such a transformative tool at such an early stage in his career demonstrates his exceptional technical acumen and creative problem-solving skills, which should go a long way towards a promising career in immuno-oncology,” Gunaratne added in the release.

Houston founder on shaping the future of medicine through biotechnology and resilience

Guest Column

Living with chronic disease has shaped my life in profound ways. My journey began in 5th grade when I was diagnosed with Scheuermann’s disease, a degenerative disc condition that kept me sidelined for an entire year. Later, I was diagnosed with hereditary neuropathy with liability to pressure palsies (HNPP), a condition that significantly impacts nerve recovery. These experiences didn’t just challenge me physically, they reshaped my perspective on healthcare — and ultimately set me on my path to entrepreneurship. What started as personal health struggles evolved into a mission to transform patient care through innovative biotechnology.

A defining part of living with these conditions was the diagnostic process. I underwent nerve tests that involved electrical shocks to my hands and arms — without anesthesia — to measure nerve activity. The pain was intense, and each test left me thinking: There has to be a better way. Even in those difficult moments, I found myself thinking about how to improve the tools and processes used in healthcare.

HNPP, in particular, has been a frustrating condition. For most people, sleeping on an arm might cause temporary numbness that disappears in an hour. For me, that same numbness can last six months. Even more debilitating is the loss of strength and fine motor skills. Living with this reality forced me to take an active role in understanding my health and seeking solutions, a mindset that would later shape my approach to leadership.

Growing up in Houston, I was surrounded by innovation. My grandfather, a pioneering urologist, was among the first to introduce kidney dialysis in the city in the 1950s. His dedication to advancing patient care initially inspired me to pursue medicine. Though my path eventually led me to healthcare administration and eventually biotech, his influence instilled in me a lifelong commitment to medicine and making a difference.

Houston’s thriving medical and entrepreneurial ecosystems played a critical role in my journey. The city’s culture of innovation and collaboration provided opportunities to explore solutions to unmet medical needs. When I transitioned from healthcare administration to founding biotech companies, I drew on the same resilience I had developed while managing my own health challenges.

My experience with chronic disease also shaped my leadership philosophy. Rather than accepting diagnoses passively, I took a proactive approach questioning assumptions, collaborating with experts, and seeking new solutions. These same principles now guide decision-making at FibroBiologics, where we are committed to developing groundbreaking therapies that go beyond symptom management to address the root causes of disease.

The resilience I built through my health struggles has been invaluable in navigating business challenges. While my early career in healthcare administration provided industry insights, launching and leading companies required the same determination I had relied on in my personal health journey.

I believe the future of healthcare lies in curative treatments, not just symptom management. Fibroblast cells hold the promise of engaging the body’s own healing processes — the most powerful cure for chronic diseases. Cell therapy represents both a scientific breakthrough and a significant business opportunity, one that has the potential to improve patient outcomes while reducing long-term healthcare costs.

Innovation in medicine isn’t just about technology; it’s about reimagining what’s possible. The future of healthcare is being written today. At FibroBiologics, our mission is driven by more than just financial success. We are focused on making a meaningful impact on patients’ lives, and this purpose-driven approach helps attract talent, engage stakeholders, and differentiate in the marketplace. Aligning business goals with patient needs isn’t just the right thing to do, it’s a powerful model for sustainable growth and lasting innovation in biotech.

---

Pete O’Heeron is the CEO and founder of FibroBiologics, a Houston-based regenerative medicine company.


Houston researchers make headway on affordable, sustainable sodium-ion battery

Energy Solutions

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries.

The findings were recently published in the journal Advanced Functional Materials.

The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

“For years, we’ve known that sodium and potassium are attractive alternatives to lithium,” Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering at Rice, said in a news release. “But the challenge has always been finding carbon-based anode materials that can store these larger ions efficiently.”

Lithium-ion batteries traditionally rely on graphite as an anode material. However, traditional graphite structures cannot efficiently store sodium or potassium energy, since the atoms are too big and interactions become too complex to slide in and out of graphite’s layers. The cone and disc structures “offer curvature and spacing that welcome sodium and potassium ions without the need for chemical doping (the process of intentionally adding small amounts of specific atoms or molecules to change its properties) or other artificial modifications,” according to the study.

“This is one of the first clear demonstrations of sodium-ion intercalation in pure graphitic materials with such stability,” Atin Pramanik, first author of the study and a postdoctoral associate in Ajayan’s lab, said in the release. “It challenges the belief that pure graphite can’t work with sodium.”

In lab tests, the carbon cones and discs stored about 230 milliamp-hours of charge per gram (mAh/g) by using sodium ions. They still held 151 mAh/g even after 2,000 fast charging cycles. They also worked with potassium-ion batteries.

“We believe this discovery opens up a new design space for battery anodes,” Ajayan added in the release. “Instead of changing the chemistry, we’re changing the shape, and that’s proving to be just as interesting.”

---

This story originally appeared on EnergyCapitalHTX.com.