For years, Squid Compression has helped ease the pain of patients in doctor's offices. Now, anyone can get the treatment on the go. Photo via squidgo.com

Houston company creates portable device that eases pain without the use of drugs

No pain, just gain

Many of the estimated 50 million Americans who suffer from chronic pain turn to drugs — including heavily abused opioids — to relieve their symptoms. Houston-based startup Portable Therapeutix LLC's drug-free solution to pain management seeks to put a dent in the market for prescription painkillers.

In 2018, Houston-based Portable Therapeutix introduced Squid Go, a portable device that's designed to ease the pain and swelling of sore joints and muscles. It's a follow-up to the company's Squid Compression, a pain management device launched in 2013 for patients at rehabilitation centers, hospitals, doctor's offices, and the like.

Squid Go enables consumers to apply two approaches — cold therapy and compression therapy — to relieving joint pain and swelling caused by arthritis, bouncing back from athletic activities, or recovering from an injury or surgery involving muscles and joints. Variations of the device can treat ankle, back, leg, knee, shoulder, or wrist pain.

To reap the benefits of Squid Go, a consumer uses the device for just 15 minutes. Squid Go — which combines a cold gel pack with proprietary compression technology — features special air pockets that inflate and deflate, gently massaging the body part needing treatment. That massaging boosts circulation and reduces swelling.

"Increased circulation brings more nutrient- and oxygen-rich blood to the area, promoting recovery," says Sam Stolbun, co-founder of Portable Therapeutix. "Meanwhile, [the] gentle compression also drives the pain-relieving cold from the gel pack deeper into the tissues to alleviate soreness and discomfort."

The coldness of the gel pack fights inflammation.

Stolbun says someone can take the lightweight, portable Squid Go device to the office, to the gym or anywhere else for on-the-go pain relief. It even can be used without the cold gel pack for compression-only therapy to improve circulation and decrease swelling. The Squid Go pump delivers about 15 treatments before it needs to be recharged.

Squid Compression received clearance from the U.S. Food and Drug Administration as a prescription-only device in 2013 and gained over-the-counter status in 2014. The consumer version, Squid Go, employs the same technology and operates the same way as Squid Compression, so a second FDA stamp of approval wasn't required.

Pricing for the heavy-duty Squid Compression system starts at $700. The consumer-friendly Squid Go system goes for $300 or $350, depending on its purpose. Users can buy extra wraps and gel packs to supplement the system.

Stolbun says he and co-founder Shai Schubert developed the Squid devices after realizing that existing pain-fighting cold packs provided only superficial relief, while water-based treatments were inconvenient and offered no compression advantages. Still other cold and compression therapies on the market are expensive and generally aren't covered by health insurance, he says.

Stolbun says that "it became apparent that a reasonably priced, well-made, portable, and effective pain relief and recovery device would meet a need for a broad range of consumers — from athletes to seniors."

Stolbun, a sports enthusiast and bakery mogul, and Schubert, a scientist and entrepreneur, established Portable Therapeutix in 2011.

The company's debut product, Squid Compression, still enjoys success, but Stolbun says the company has shifted its focus to Squid Go. Portable Therapeutix plans to pump up sales for Squid Go via its online presence, he says, as well as through physical therapists, sports trainers and other professionals who've used Squid Compression but want to offer the less pricey Squid Go model to their clients for in-home treatment.

Portable Therapeutix is backed by private investors; the amount of funding it has received isn't available. The company doesn't release revenue and profit figures.

Today, the company employs just one person in Houston but will add workers as its distribution pipeline expands, Stolbun says. Sales, marketing, and customer service representatives are scattered around the country. Stolbun, the CEO, is based in Houston, while Schubert, the chief technical officer, is based in Boston.

Portable Therapeutix relies, in part, on word-of-mouth praise to promote Squid Go. Among those hailing the device is Lee Ward of Houston, who describes himself as a competitive tennis player.

On the Squid Go website, Ward explains that he'd been suffering from progressively worsening tendonitis in his knees for a couple of years.

"I tried a number of remedies, including ice and gel packs, immediately following my tennis workout, but both remedies were ineffective and difficult to use," Ward says in his online testimonial.

He then discovered Squid Go and became a fan.

"The best thing about [Squid Go] is its ease of use. It provides a quick, effective treatment that makes it ideal for daily use by both the serious and recreational athlete," Ward says.

Smart tech

Courtesy of Squid Go

Squid Go combines a cold gel pack with proprietary compression technology and features special air pockets that inflate and deflate, gently massaging the body part needing treatment.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

4 Houston-area schools excel with best online degree programs in U.S.

Top of the Class

Four Houston-area universities have earned well-deserved recognition in U.S. News & World Report's just-released rankings of the Best Online Programs for 2026.

The annual rankings offer insight into the best American universities for students seeking a flexible and affordable way to attain a higher education. In the 2026 edition, U.S. News analyzed nearly 1,850 online programs for bachelor's degrees and seven master's degree disciplines: MBA, business (non-MBA), criminal justice, education, engineering, information technology, and nursing.

Many of these local schools are also high achievers in U.S. News' separate rankings of the best grad schools.

Rice University tied with Texas A&M University in College Station for the No. 3 best online master's in information technology program in the U.S., and its online MBA program ranked No. 21 nationally.

The online master's in nursing program at The University of Texas Medical Branch in Galveston was the highest performing master's nursing degree in Texas, and it ranked No. 19 nationally.

Three different programs at The University of Houston were ranked among the top 100 nationwide:
  • No. 18 – Best online master's in education
  • No. 59 – Best online master's in business (non-MBA)
  • No. 89 – Best online bachelor's program
The University of Houston's Clear Lake campus ranked No. 65 nationally for its online master's in education program.

"Online education continues to be a vital path for professionals, parents, and service members seeking to advance their careers and broaden their knowledge with necessary flexibility," said U.S. News education managing editor LaMont Jones in a press release. "The 2026 Best Online Programs rankings are an essential tool for prospective students, providing rigorous, independent analysis to help them choose a high-quality program that aligns with their personal and professional goals."

A little farther outside Houston, two more universities – Sam Houston State University in Huntsville and Texas A&M University in College Station – stood out for their online degree programs.

Sam Houston State University

  • No. 5 – Best online master's in criminal justice
  • No. 30 – Best online master's in information technology
  • No. 36 – Best online master's in education
  • No. 77 – Best online bachelor's program
  • No. 96 – Best online master's in business (non-MBA)
Texas A&M University
  • No. 3 – Best online master's in information technology (tied with Rice)
  • No. 3 – Best online master's in business (non-MBA)
  • No. 8 – Best online master's in education
  • No. 9 – Best online master's in engineering
  • No. 11 – Best online bachelor's program
---

This article originally appeared on CultureMap.com.

Houston wearable biosensing company closes $13M pre-IPO round

fresh funding

Wellysis, a Seoul, South Korea-headquartered wearable biosensing company with its U.S. subsidiary based in Houston, has closed a $13.5 million pre-IPO funding round and plans to expand its Texas operations.

The round was led by Korea Investment Partners, Kyobo Life Insurance, Kyobo Securities, Kolon Investment and a co-general partner fund backed by SBI Investment and Samsung Securities, according to a news release.

Wellysis reports that the latest round brings its total capital raised to about $30 million. The company is working toward a Korea Securities Dealers Automated Quotations listing in Q4 2026 or Q1 2027.

Wellysis is known for its continuous ECG/EKG monitor with AI reporting. Its lightweight and waterproof S-Patch cardiac monitor is designed for extended testing periods of up to 14 days on a single battery charge.

The company says that the funding will go toward commercializing the next generation of the S-Patch, known as the S-Patch MX, which will be able to capture more than 30 biometric signals, including ECG, temperature and body composition.

Wellysis also reports that it will use the funding to expand its Houston-based operations, specifically in its commercial, clinical and customer success teams.

Additionally, the company plans to accelerate the product development of two other biometric products:

  • CardioAI, an AI-powered diagnostic software platform designed to support clinical interpretation, workflow efficiency and scalable cardiac analysis
  • BioArmour, a non-medical biometric monitoring solution for the sports, public safety and defense sectors

“This pre-IPO round validates both our technology and our readiness to scale globally,” Young Juhn, CEO of Wellysis, said in the release. “With FDA-cleared solutions, expanding U.S. operations, and a strong AI roadmap, Wellysis is positioned to redefine how cardiac data is captured, interpreted, and acted upon across healthcare systems worldwide.”

Wellysis was founded in 2019 as a spinoff of Samsung. Its S-Patch runs off of a Samsung Smart Health Processor. The company's U.S. subsidiary, Wellysis USA Inc., was established in Houston in 2023 and was a resident of JLABS@TMC.

Elon Musk vows to launch solar-powered data centers in space

To Outer Space

Elon Musk vowed this week to upend another industry just as he did with cars and rockets — and once again he's taking on long odds.

The world's richest man said he wants to put as many as a million satellites into orbit to form vast, solar-powered data centers in space — a move to allow expanded use of artificial intelligence and chatbots without triggering blackouts and sending utility bills soaring.

To finance that effort, Musk combined SpaceX with his AI business on Monday, February 2, and plans a big initial public offering of the combined company.

“Space-based AI is obviously the only way to scale,” Musk wrote on SpaceX’s website, adding about his solar ambitions, “It’s always sunny in space!”

But scientists and industry experts say even Musk — who outsmarted Detroit to turn Tesla into the world’s most valuable automaker — faces formidable technical, financial and environmental obstacles.

Feeling the heat

Capturing the sun’s energy from space to run chatbots and other AI tools would ease pressure on power grids and cut demand for sprawling computing warehouses that are consuming farms and forests and vast amounts of water to cool.

But space presents its own set of problems.

Data centers generate enormous heat. Space seems to offer a solution because it is cold. But it is also a vacuum, trapping heat inside objects in the same way that a Thermos keeps coffee hot using double walls with no air between them.

“An uncooled computer chip in space would overheat and melt much faster than one on Earth,” said Josep Jornet, a computer and electrical engineering professor at Northeastern University.

One fix is to build giant radiator panels that glow in infrared light to push the heat “out into the dark void,” says Jornet, noting that the technology has worked on a small scale, including on the International Space Station. But for Musk's data centers, he says, it would require an array of “massive, fragile structures that have never been built before.”

Floating debris

Then there is space junk.

A single malfunctioning satellite breaking down or losing orbit could trigger a cascade of collisions, potentially disrupting emergency communications, weather forecasting and other services.

Musk noted in a recent regulatory filing that he has had only one “low-velocity debris generating event" in seven years running Starlink, his satellite communications network. Starlink has operated about 10,000 satellites — but that's a fraction of the million or so he now plans to put in space.

“We could reach a tipping point where the chance of collision is going to be too great," said University at Buffalo's John Crassidis, a former NASA engineer. “And these objects are going fast -- 17,500 miles per hour. There could be very violent collisions."

No repair crews

Even without collisions, satellites fail, chips degrade, parts break.

Special GPU graphics chips used by AI companies, for instance, can become damaged and need to be replaced.

“On Earth, what you would do is send someone down to the data center," said Baiju Bhatt, CEO of Aetherflux, a space-based solar energy company. "You replace the server, you replace the GPU, you’d do some surgery on that thing and you’d slide it back in.”

But no such repair crew exists in orbit, and those GPUs in space could get damaged due to their exposure to high-energy particles from the sun.

Bhatt says one workaround is to overprovision the satellite with extra chips to replace the ones that fail. But that’s an expensive proposition given they are likely to cost tens of thousands of dollars each, and current Starlink satellites only have a lifespan of about five years.

Competition — and leverage

Musk is not alone trying to solve these problems.

A company in Redmond, Washington, called Starcloud, launched a satellite in November carrying a single Nvidia-made AI computer chip to test out how it would fare in space. Google is exploring orbital data centers in a venture it calls Project Suncatcher. And Jeff Bezos’ Blue Origin announced plans in January for a constellation of more than 5,000 satellites to start launching late next year, though its focus has been more on communications than AI.

Still, Musk has an edge: He's got rockets.

Starcloud had to use one of his Falcon rockets to put its chip in space last year. Aetherflux plans to send a set of chips it calls a Galactic Brain to space on a SpaceX rocket later this year. And Google may also need to turn to Musk to get its first two planned prototype satellites off the ground by early next year.

Pierre Lionnet, a research director at the trade association Eurospace, says Musk routinely charges rivals far more than he charges himself —- as much as $20,000 per kilo of payload versus $2,000 internally.

He said Musk’s announcements this week signal that he plans to use that advantage to win this new space race.

“When he says we are going to put these data centers in space, it’s a way of telling the others we will keep these low launch costs for myself,” said Lionnet. “It’s a kind of powerplay.”