For years, Squid Compression has helped ease the pain of patients in doctor's offices. Now, anyone can get the treatment on the go. Photo via squidgo.com

Houston company creates portable device that eases pain without the use of drugs

No pain, just gain

Many of the estimated 50 million Americans who suffer from chronic pain turn to drugs — including heavily abused opioids — to relieve their symptoms. Houston-based startup Portable Therapeutix LLC's drug-free solution to pain management seeks to put a dent in the market for prescription painkillers.

In 2018, Houston-based Portable Therapeutix introduced Squid Go, a portable device that's designed to ease the pain and swelling of sore joints and muscles. It's a follow-up to the company's Squid Compression, a pain management device launched in 2013 for patients at rehabilitation centers, hospitals, doctor's offices, and the like.

Squid Go enables consumers to apply two approaches — cold therapy and compression therapy — to relieving joint pain and swelling caused by arthritis, bouncing back from athletic activities, or recovering from an injury or surgery involving muscles and joints. Variations of the device can treat ankle, back, leg, knee, shoulder, or wrist pain.

To reap the benefits of Squid Go, a consumer uses the device for just 15 minutes. Squid Go — which combines a cold gel pack with proprietary compression technology — features special air pockets that inflate and deflate, gently massaging the body part needing treatment. That massaging boosts circulation and reduces swelling.

"Increased circulation brings more nutrient- and oxygen-rich blood to the area, promoting recovery," says Sam Stolbun, co-founder of Portable Therapeutix. "Meanwhile, [the] gentle compression also drives the pain-relieving cold from the gel pack deeper into the tissues to alleviate soreness and discomfort."

The coldness of the gel pack fights inflammation.

Stolbun says someone can take the lightweight, portable Squid Go device to the office, to the gym or anywhere else for on-the-go pain relief. It even can be used without the cold gel pack for compression-only therapy to improve circulation and decrease swelling. The Squid Go pump delivers about 15 treatments before it needs to be recharged.

Squid Compression received clearance from the U.S. Food and Drug Administration as a prescription-only device in 2013 and gained over-the-counter status in 2014. The consumer version, Squid Go, employs the same technology and operates the same way as Squid Compression, so a second FDA stamp of approval wasn't required.

Pricing for the heavy-duty Squid Compression system starts at $700. The consumer-friendly Squid Go system goes for $300 or $350, depending on its purpose. Users can buy extra wraps and gel packs to supplement the system.

Stolbun says he and co-founder Shai Schubert developed the Squid devices after realizing that existing pain-fighting cold packs provided only superficial relief, while water-based treatments were inconvenient and offered no compression advantages. Still other cold and compression therapies on the market are expensive and generally aren't covered by health insurance, he says.

Stolbun says that "it became apparent that a reasonably priced, well-made, portable, and effective pain relief and recovery device would meet a need for a broad range of consumers — from athletes to seniors."

Stolbun, a sports enthusiast and bakery mogul, and Schubert, a scientist and entrepreneur, established Portable Therapeutix in 2011.

The company's debut product, Squid Compression, still enjoys success, but Stolbun says the company has shifted its focus to Squid Go. Portable Therapeutix plans to pump up sales for Squid Go via its online presence, he says, as well as through physical therapists, sports trainers and other professionals who've used Squid Compression but want to offer the less pricey Squid Go model to their clients for in-home treatment.

Portable Therapeutix is backed by private investors; the amount of funding it has received isn't available. The company doesn't release revenue and profit figures.

Today, the company employs just one person in Houston but will add workers as its distribution pipeline expands, Stolbun says. Sales, marketing, and customer service representatives are scattered around the country. Stolbun, the CEO, is based in Houston, while Schubert, the chief technical officer, is based in Boston.

Portable Therapeutix relies, in part, on word-of-mouth praise to promote Squid Go. Among those hailing the device is Lee Ward of Houston, who describes himself as a competitive tennis player.

On the Squid Go website, Ward explains that he'd been suffering from progressively worsening tendonitis in his knees for a couple of years.

"I tried a number of remedies, including ice and gel packs, immediately following my tennis workout, but both remedies were ineffective and difficult to use," Ward says in his online testimonial.

He then discovered Squid Go and became a fan.

"The best thing about [Squid Go] is its ease of use. It provides a quick, effective treatment that makes it ideal for daily use by both the serious and recreational athlete," Ward says.

Smart tech

Courtesy of Squid Go

Squid Go combines a cold gel pack with proprietary compression technology and features special air pockets that inflate and deflate, gently massaging the body part needing treatment.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers create AI model to tap into how brain activity relates to illness

brainiac

Houston researchers are part of a team that has created an AI model intended to understand how brain activity relates to behavior and illness.

Scientists from Baylor College of Medicine worked with peers from Yale University, University of Southern California and Idaho State University to make Brain Language Model, or BrainLM. Their research was published as a conference paper at ICLR 2024, a meeting of some of deep learning’s greatest minds.

“For a long time we’ve known that brain activity is related to a person’s behavior and to a lot of illnesses like seizures or Parkinson’s,” Dr. Chadi Abdallah, associate professor in the Menninger Department of Psychiatry and Behavioral Sciences at Baylor and co-corresponding author of the paper, says in a press release. “Functional brain imaging or functional MRIs allow us to look at brain activity throughout the brain, but we previously couldn’t fully capture the dynamic of these activities in time and space using traditional data analytical tools.

"More recently, people started using machine learning to capture the brain complexity and how it relates it to specific illnesses, but that turned out to require enrolling and fully examining thousands of patients with a particular behavior or illness, a very expensive process,” Abdallah continues.

Using 80,000 brain scans, the team was able to train their model to figure out how brain activities related to one another. Over time, this created the BrainLM brain activity foundational model. BrainLM is now well-trained enough to use to fine-tune a specific task and to ask questions in other studies.

Abdallah said that using BrainLM will cut costs significantly for scientists developing treatments for brain disorders. In clinical trials, it can cost “hundreds of millions of dollars,” he said, to enroll numerous patients and treat them over a significant time period. By using BrainLM, researchers can enroll half the subjects because the AI can select the individuals most likely to benefit.

The team found that BrainLM performed successfully in many different samples. That included predicting depression, anxiety and PTSD severity better than other machine learning tools that do not use generative AI.

“We found that BrainLM is performing very well. It is predicting brain activity in a new sample that was hidden from it during the training as well as doing well with data from new scanners and new population,” Abdallah says. “These impressive results were achieved with scans from 40,000 subjects. We are now working on considerably increasing the training dataset. The stronger the model we can build, the more we can do to assist with patient care, such as developing new treatment for mental illnesses or guiding neurosurgery for seizures or DBS.”

For those suffering from neurological and mental health disorders, BrainLM could be a key to unlocking treatments that will make a life-changing difference.

Houston-based cleantech unicorn named among annual top disruptors

on the rise

Houston-based biotech startup Solugen is making waves among innovative companies.

Solugen appears at No. 36 on CNBC’s annual Disruptor 50 list, which highlights private companies that are “upending the classic definition of disruption.” Privately owned startups founded after January 1, 2009, were eligible for the Disruptor 50 list.

Founded in 2016, Solugen replaces petroleum-based products with plant-derived substitutes through its Bioforge manufacturing platform. For example, it uses engineered enzymes and metal catalysts to convert feedstocks like sugar into chemicals that have traditionally been made from fossil fuels, such as petroleum and natural gas.

Solugen has raised $643 million in funding and now boasts a valuation of $2.2 billion.

“Sparked by a chance medical school poker game conversation in 2016, Solugen evolved from prototype to physical asset in five years, and production hit commercial scale shortly thereafter,” says CNBC.

Solugen co-founders Gaurab Chakrabarti and Sean Hunt received the Entrepreneur of The Year 2023 National Award, presented by professional services giant EY.

“Solugen is a textbook startup launched by two partners with $10,000 in seed money that is revolutionizing the chemical refining industry. The innovation-driven company is tackling impactful, life-changing issues important to the planet,” Entrepreneur of The Year judges wrote.

In April 2024, Solugen broke ground on a Bioforge biomanufacturing plant in Marshall, Minnesota. The 500,000-square-foot, 34-acre facility arose through a Solugen partnership with ADM. Chicago-based ADM produces agricultural products, commodities, and ingredients. The plant is expected to open in the fall of 2025.

“Solugen’s … technology is a transformative force in sustainable chemical manufacturing,” says Hunt. “The new facility will significantly increase our existing capabilities, enabling us to expand the market share of low-carbon chemistries.”

Houston cleantech company tests ​all-electric CO2-to-fuel production technology

RESULTS ARE IN

Houston-based clean energy company Syzygy Plasmonics has successfully tested all-electric CO2-to-fuel production technology at RTI International’s facility at North Carolina’s Research Triangle Park.

Syzygy says the technology can significantly decarbonize transportation by converting two potent greenhouse gases, carbon dioxide and methane, into low-carbon jet fuel, diesel, and gasoline.

Equinor Ventures and Sumitomo Corp. of Americas sponsored the pilot project.

“This project showcases our ability to fight climate change by converting harmful greenhouse gases into fuel,” Trevor Best, CEO of Syzygy, says in a news release.

“At scale,” he adds, “we’re talking about significantly reducing and potentially eliminating the carbon intensity of shipping, trucking, and aviation. This is a major step toward quickly and cost effectively cutting emissions from the heavy-duty transport sector.”

At commercial scale, a typical Syzygy plant will consume nearly 200,000 tons of CO2 per year, the equivalent of taking 45,000 cars off the road.

“The results of this demonstration are encouraging and represent an important milestone in our collaboration with Syzygy,” says Sameer Parvathikar, director of renewable energy and energy storage at RTI.

In addition to the CO2-to-fuel demonstration, Syzygy's Ammonia e-Cracking™ technology has completed over 2,000 hours of performance and optimization testing at its plant in Houston. Syzygy is finalizing a site and partners for a commercial CO2-to-fuel plant.

Syzygy is working to decarbonize the chemical industry, responsible for almost 20 percent of industrial CO2 emissions, by using light instead of combustion to drive chemical reactions.

------

This article originally ran on EnergyCapital.