The probe or sensor, known as spinalNET, is used to explore how neurons in the spinal cord process sensation and control movement. Photo by Jeff Fitlow/Rice University

A team of Rice University engineers has developed an implantable probe over a hundred times smaller than the width of a hair that aims to help develop better treatments for spinal cord disease and injury.

Detailed in a recent study published in Cell Reports, the probe or sensor, known as spinalNET, is used to explore how neurons in the spinal cord process sensation and control movement, according to a statement from Rice. The research was supported by the National Institutes of Health, Rice, the California-based Salk Institute for Biological Studies, and the philanthropic Mary K. Chapman Foundation based in Oklahoma.

The soft and flexible sensor was used to record neuronal activity in freely moving mice with high resolution for multiple days. Historically, tracking this level of activity has been difficult for researchers because the spinal cord and its neurons move so much during normal activity, according to the team.

“We developed a tiny sensor, spinalNET, that records the electrical activity of spinal neurons as the subject performs normal activity without any restraint,” Yu Wu, a research scientist at Rice and lead author of the study said in a statement. “Being able to extract such knowledge is a first but important step to develop cures for millions of people suffering from spinal cord diseases.”

The team says that before now the spinal cord has been considered a "black box." But the device has already helped the team uncover new findings about the body's rhythmic motor patterns, which drive walking, breathing and chewing.

Lan Luan (from left), Yu Wu, and Chong Xie are working on the breakthrough device. Photo by Jeff Fitlow/Rice University

"Some (spinal neurons) are strongly correlated with leg movement, but surprisingly, a lot of neurons have no obvious correlation with movement,” Wu said in the statement. “This indicates that the spinal circuit controlling rhythmic movement is more complicated than we thought.”

The team said they hope to explore these findings further and aim to use the technology for additional medical purposes.

“In addition to scientific insight, we believe that as the technology evolves, it has great potential as a medical device for people with spinal cord neurological disorders and injury,” Lan Luan, an associate professor of electrical and computer engineering at Rice and a corresponding author on the study, added in the statement.

Rice researchers have developed several implantable, minimally invasive devices to address health and mental health issues.

In the spring, the university announced that the United States Department of Defense had awarded a four-year, $7.8 million grant to the Texas Heart Institute and a Rice team led by co-investigator Yaxin Wang to continue to break ground on a novel left ventricular assist device (LVAD) that could be an alternative to current devices that prevent heart transplantation.

That same month, the university shared news that Professor Jacob Robinson had published findings on minimally invasive bioelectronics for treating psychiatric conditions. The 9-millimeter device can deliver precise and programmable stimulation to the brain to help treat depression, obsessive-compulsive disorder and post-traumatic stress disorder.
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas universities develop innovative open-source platform for cell analysis

picture this

What do labs do when faced with large amounts of imaging data? Powerful cloud computing systems have long been the answer to that question, but a new riposte comes from SPACe.

That’s the name of a new open-source image analysis platform designed by researchers at Baylor College of Medicine, Texas A&M University and the University of Houston.

SPACe, or Swift Phenotypic Analysis of Cells, was created to be used on standard computers that even small labs can access, meaning cellular analysis using images produced through cell painting has a lower barrier to entry than ever before.

“The pharmaceutical industry has been accustomed to simplifying complex data into single metrics. This platform allows us to shift away from that approach and instead capture the full diversity of cellular responses, providing richer, more informative data that can reveal new avenues for drug development,” Michael Mancini, professor of molecular and cellular biology and director of the Gulf Coast Consortium Center for Advanced Microscopy and Image Informatics co-located at Baylor College of Medicine and TAMU Institute for Bioscience and Technology.

SPACe is not only accessible because of its less substantial computational needs. Because the platform is open-source, it’s available to anyone who needs it. And it can be used by academic and pharmaceutical researchers alike.

“The platform allows for the identification of non-toxic effects of drugs, such as alterations in cell shape or effects on specific organelles, which are often overlooked by traditional assays that focus largely on cell viability,” says Fabio Stossi, currently a senior scientist with St. Jude Children’s Research Hospital, the lead author who was at Baylor during the development of SPACe.

The platform is a better means than ever of analyzing thousands of individual cells through automated imaging platforms, thereby better capturing the variability of biological processes. Through that, SPACe allows scientists an enhanced understanding of the interactions between drugs and cells, and does it on standard computers, translating to scientists performing large-scale drug screenings with greater ease.

"This tool could be a game-changer in how we understand cellular biology and discover new drugs. By capturing the full complexity of cellular responses, we are opening new doors for drug discovery that go beyond toxicity,” says Stossi.

And the fact that it’s open-source allows scientists to access SPACe for free right now. Researchers interested in using the platform can access it through Github at github.com/dlabate/SPACe. This early version could already make waves in research, but the team also plans to continually improve their product with the help of collaborations with other institutions.

The Ion names new coworking partner for Houston innovation hub

Where to Work

Rice University subsidiary Rice Real Estate Co. has tapped coworking company Industrious as the new operator of the Ion’s 86,000-square-foot coworking space in Midtown. Industrious replaces WeWork-owned Common Desk in that role.

The Ion, owned by Rice Real Estate and located at 4201 Main St., is a 266,000-square-foot office building and innovation hub in the 16-acre Ion District.

Features of the coworking space include private suites and offices, dedicated desks, phone booths and conference rooms. In 2022, Common Desk said it was expanding the space by 28,000 square feet, bringing it to the current size.

“(Industrious’) unparalleled expertise in delivering quality, hospitality-driven workspaces complements our vision of creating a world-class ecosystem where entrepreneurs, corporations, and academia converge to drive innovation forward,” Ken Jett, president of Rice Real Estate, said in a statement.

Natalie Levine, senior manager of real estate at Industrious, says her company will work with Rice Real Estate “to continue to position the Ion as an invaluable contributor to the growth of Houston’s innovation community.”

Dallas-based commercial real estate services company CBRE said Jan. 14 that it had agreed to acquire Industrious in a deal valued at $400 million.

The Ion is Industrious’ second location in Houston. The company’s other local coworking space is at 1301 McKinney St.

Office tenants at the Ion include Occidental Petroleum, Fathom Fund, Activate, Carbon Clean, Microsoft and Chevron Technology Ventures.