The probe or sensor, known as spinalNET, is used to explore how neurons in the spinal cord process sensation and control movement. Photo by Jeff Fitlow/Rice University

A team of Rice University engineers has developed an implantable probe over a hundred times smaller than the width of a hair that aims to help develop better treatments for spinal cord disease and injury.

Detailed in a recent study published in Cell Reports, the probe or sensor, known as spinalNET, is used to explore how neurons in the spinal cord process sensation and control movement, according to a statement from Rice. The research was supported by the National Institutes of Health, Rice, the California-based Salk Institute for Biological Studies, and the philanthropic Mary K. Chapman Foundation based in Oklahoma.

The soft and flexible sensor was used to record neuronal activity in freely moving mice with high resolution for multiple days. Historically, tracking this level of activity has been difficult for researchers because the spinal cord and its neurons move so much during normal activity, according to the team.

“We developed a tiny sensor, spinalNET, that records the electrical activity of spinal neurons as the subject performs normal activity without any restraint,” Yu Wu, a research scientist at Rice and lead author of the study said in a statement. “Being able to extract such knowledge is a first but important step to develop cures for millions of people suffering from spinal cord diseases.”

The team says that before now the spinal cord has been considered a "black box." But the device has already helped the team uncover new findings about the body's rhythmic motor patterns, which drive walking, breathing and chewing.

Lan Luan (from left), Yu Wu, and Chong Xie are working on the breakthrough device. Photo by Jeff Fitlow/Rice University

"Some (spinal neurons) are strongly correlated with leg movement, but surprisingly, a lot of neurons have no obvious correlation with movement,” Wu said in the statement. “This indicates that the spinal circuit controlling rhythmic movement is more complicated than we thought.”

The team said they hope to explore these findings further and aim to use the technology for additional medical purposes.

“In addition to scientific insight, we believe that as the technology evolves, it has great potential as a medical device for people with spinal cord neurological disorders and injury,” Lan Luan, an associate professor of electrical and computer engineering at Rice and a corresponding author on the study, added in the statement.

Rice researchers have developed several implantable, minimally invasive devices to address health and mental health issues.

In the spring, the university announced that the United States Department of Defense had awarded a four-year, $7.8 million grant to the Texas Heart Institute and a Rice team led by co-investigator Yaxin Wang to continue to break ground on a novel left ventricular assist device (LVAD) that could be an alternative to current devices that prevent heart transplantation.

That same month, the university shared news that Professor Jacob Robinson had published findings on minimally invasive bioelectronics for treating psychiatric conditions. The 9-millimeter device can deliver precise and programmable stimulation to the brain to help treat depression, obsessive-compulsive disorder and post-traumatic stress disorder.
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston students develop new device to prepare astronauts for outer space

space race

Rice University students from the George R. Brown School of Engineering and Computing designed a space exercise harness that is comfortable, responsive, and adaptable and has the potential to assist with complex and demanding spacewalks.

A group of students—Emily Yao, Nikhil Ashri, Jose Noriega, Ben Bridges and graduate student Jack Kalicak—mentored by assistant professor of mechanical engineering Vanessa Sanchez, modernized harnesses that astronauts use to perform rigorous exercises. The harnesses are particularly important in preparing astronauts for a reduced-gravity space environment, where human muscles and bones atrophy faster than they do on Earth. However, traditional versions of the harnesses had many limitations that included chafing and bruising.

The new harnesses include sensors for astronauts to customize their workouts by using real-time data and feedback. An additional two sensors measure astronauts’ comfort and exercise performance based on temperature and humidity changes during exercise and load distribution at common pressure points.

“Our student-led team addressed this issue by adding pneumatic padding that offers a customized fit, distributes pressure over a large surface area to reduce discomfort or injuries and also seamlessly adapts to load shifts — all of which together improved astronauts’ performance,” Sanchez said in a news release. “It was very fulfilling to watch these young engineers work together to find innovative and tangible solutions to real-world problems … This innovative adjustable exercise harness transforms how astronauts exercise in space and will significantly improve their health and safety during spaceflights.”

The project was developed in response to a challenge posted by the HumanWorks Lab and Life Science Labs at NASA and NASA Johnson Space Center for the 2025 Technology Collaboration Center’s (TCC) Wearables Workshop and University Challenge, where teams worked to solve problems for industry leaders.

Rice’s adaptive harness won the Best Challenge Response Award. It was funded by the National Science Foundation and Rice’s Office of Undergraduate Research and Inquiry.

“This challenge gave us the freedom to innovate and explore possibilities beyond the current harness technology,” Yao added in the release. “I’m especially proud of how our team worked together to build a working prototype that not only has real-world impact but also provides a foundation that NASA and space companies can build and iterate upon.”

Houston hospital performs first fully robotic heart transplant in the U.S.

robotic surgery

A team at Baylor St. Luke’s Medical Center, led by Dr. Kenneth Liao, successfully performed the first fully robotic heart transplant in the United States earlier this year, the Houston hospital recently shared.

Liao, a professor and chief of cardiothoracic transplantation and circulatory support at Baylor College of Medicine and chief of cardiothoracic transplantation and mechanical circulatory support at Baylor St. Luke’s Medical Center, used a surgical robot to implant a new heart in a 45-year-old male patient through preperitoneal space in the abdomen by making small incisions.

The robotic technology allowed the medical team to avoid opening the chest and breaking the breast bone, which reduces the risk of infection, blood transfusions and excessive bleeding. It also leads to an easier recovery, according to Liao.

"Opening the chest and spreading the breastbone can affect wound healing and delay rehabilitation and prolong the patient's recovery, especially in heart transplant patients who take immunosuppressants," Liao said in a news release. "With the robotic approach, we preserve the integrity of the chest wall, which reduces the risk of infection and helps with early mobility, respiratory function and overall recovery."

The patient received the heart transplant in March, after spending about four months in the hospital due to advanced heart failure. According to Baylor, he was discharged home after recovering from the surgery in the hospital for a month without complications.

"This transplant shows what is possible when innovation and surgical experience come together to improve patient care," Liao added in the release. "Our goal is to offer patients the safest, most effective and least invasive procedures, and robotic technology allows us to do that in extraordinary ways."

7 can't miss Houston business and innovation events for July

where to be

Editor's note: While many Houstonians are flocking to vacation destinations, there are still plenty of opportunities to network and learn at tech and business events for those sticking close to home this month. From an inaugural biotech summit to the 12th edition of a local pitch showcase, here are the Houston business and innovation events you can't miss in July and how to register. Please note: this article might be updated to add more events.

July 10 - Out in Tech Mixer 

Out in Tech Houston provides an inclusive networking space for LGBTQ+ people and allies working in tech. Check out this relaxed, social-mixer event, hosted on the second Thursday of every month.

This event is Thursday, July 10, from 7 to 8:30 p.m. at Second Draught. Register here.

July 14 – Latinas in Tech Coworking Day 

Connect with fellow Latinas in the industry at Sesh Coworking. Network or work alongside peers, board members and community leaders in a shared office environment.

This event is Monday, July 14, from 9-11:30 a.m. at Sesh Coworking. Find more information here.

July 17 – UTMB Innovation VentureX Summit

Attend the inaugural UTMB Innovation VentureX Summit, where innovators, entrepreneurs, researchers and investors will dive into the future of biotech. Expect panel discussions, fireside chats, a technology showcase and networking opportunities.

This event is Thursday, July 17, from 7:30 a.m.-4 p.m. at The University of Texas Medical Branch at Galveston. Find more information here.

July 17 – Open Project Night 

Collaborate on solutions for some of Houston’s most pressing issues at this month’s Open Project Night at Impact Hub Houston. Hear from guest speakers and listen to open mic pitches. July’s theme is Decent Work & Economic Growth.

This event is Thursday, July 17, from 5:30-7:30 p.m at Impact Hub Houston. Register here.

July 24 – NASA Tech Talks

Every fourth Thursday of the month, NASA experts, including longtime engineer Montgomery Goforth, present on technology development challenges NASA’s Johnson Space Center and the larger aerospace community are facing and how they can be leveraged by Houston’s innovation community. Stick around after for drinks and networking at Second Draught.

This event is Thursday, July 24, from 6-7 p.m. at the Ion. Register here.

July 30 – Ion Bike Club

Join Bike Houston at the Ion for a 45-minute guided cruise through the Ion District and Midtown. Afterward, enjoy a complimentary beer and network with like-minded riders at Second Draught.

This event is Wednesday, July 30, from 5:30-7:30 p.m. at the Ion. Register here.

July 31 – Bayou Startup Showcase

Hear pitches from startups and small businesses from Rice University’s OwlSpark and the University of Houston’s RED Labs accelerators at the 12th annual Bayou Startup Showcase. Read more about this year’s teams here.

This event is Thursday, July 31, from 3:30-7 p.m. at the Ion. Register here.