Prada is collaborating with Houston-based aerospace company Axiom Space on the design of spacesuits for NASA’s Artemis III mission to the moon. Photo via axiomspace.com

Courtesy of the Prada luxury brand, NASA astronauts are getting an infusion of fashion.

Prada is collaborating with Houston-based aerospace company Axiom Space on the design of spacesuits for NASA’s Artemis III mission to the moon. Astronauts haven’t yet been chosen for the mission, which is set for 2025.

“Prada’s technical expertise with raw materials, manufacturing techniques, and innovative design concepts will bring advanced technologies instrumental in ensuring not only the comfort of astronauts on the lunar surface, but also the much-needed human factors considerations absent from legacy spacesuits,” says Michael Suffredini, co-founder, president, and CEO of Axiom Space.

The spacesuit, called the Axiom Extravehicular Mobility Unit (AxEMU), is geared toward improving astronauts’ flexibility, boosting protection against harsh conditions, and supplying tools for exploration and scientific activities.

“Our decades of experimentation, cutting-edge technology, and design know-how – which started back in the ’90s with Luna Rossa challenging for the America’s Cup – will now be applied to the design of a spacesuit for the Artemis era. It is a true celebration of the power of human creativity and innovation to advance civilization,” says Lorenzo Bertelli, marketing director of the Prada brand.

NASA has enlisted Axiom and Charlotte, North Carolina-based Collins Aerospace to outfit astronauts with next-generation spacesuits. Axiom’s partners on this project are KBR and Sophic Synergistics, both based in Houston, along with Air-Lock, A-P-T Research, Arrow Science and Technology, David Clark Co., and Paragon Space Development.

Collins maintains a sizable presence at the Houston Spaceport.

In July, Axiom secured a NASA task order potentially worth $147 million to modify the Artemis III spacesuit for astronauts heading to the International Space Station. This follows a $228 million NASA task order awarded to Axiom in 2022 for development of the Artemis III spacesuit.

The task orders are part of Axiom’s $1.26 billion spacesuit contract with NASA. All told, NASA has earmarked as much as $3.5 billion for new spacesuits.

For its return to the moon, NASA has doubled down on its relationships with two companies in Houston. Photo courtesy of NASA

NASA expands spacesuit partnerships with 2 Houston tech companies in $5M deals

getting ready to moon walk

Two Houston space tech companies are suiting up thanks to an expanded relationship with NASA.

Axiom Space and Collins Aerospace, which have been working with NASA developing new spacesuits since last summer, have each received $5 million to continue their work. The new spacesuits will be used in NASA's upcoming Artemis missions. Axiom Space, which unveiled its design in March, is creating a suit that will be used in low Earth orbit, and Collins Aerospace, headquartered in Charlotte, North Carolina, but with a significant presence in Houston, will build a suit that will be worn on the lunar surface.

“These task orders position NASA for success should additional capabilities become necessary or advantageous to NASA’s missions as the agency paves the way for deep space exploration and commercialization of low Earth orbit,” says Lara Kearney, manager of the Extravehicular Activity and Human Surface Mobility Program at the Johnson Space Center, in a news release. “Using this competitive approach we will enhance redundancy, expand future capabilities, and further invest in the space economy.”

The spacesuit, revealed in March, will be worn by the first woman and first person of color to visit the moon. Photo courtesy of Axiom Space

These two new Exploration Extravehicular Activity Services task orders are being issued due to an increased capability request.

"Axiom Space was previously awarded an initial task order to develop a spacewalking system for a demonstration in partial gravity on the lunar surface during Artemis III and will now begin early assessments for extending that suit for use outside the International Space Station," reads the NASA news release. "Likewise, Collins Aerospace was previously awarded an initial task order to develop a spacewalking system for a demonstration in microgravity outside the space station and will now begin early assessments for extending that suit for use on the lunar surface."

Each part of the missions — low Earth orbit and the lunar surface — come with their own set of challenges, including variation in gravitational fields, environments, and mission tasks. These suits will potentially be used throughout the lunar missions through 2034.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers make headway on affordable, sustainable sodium-ion battery

Energy Solutions

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries.

The findings were recently published in the journal Advanced Functional Materials.

The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

“For years, we’ve known that sodium and potassium are attractive alternatives to lithium,” Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering at Rice, said in a news release. “But the challenge has always been finding carbon-based anode materials that can store these larger ions efficiently.”

Lithium-ion batteries traditionally rely on graphite as an anode material. However, traditional graphite structures cannot efficiently store sodium or potassium energy, since the atoms are too big and interactions become too complex to slide in and out of graphite’s layers. The cone and disc structures “offer curvature and spacing that welcome sodium and potassium ions without the need for chemical doping (the process of intentionally adding small amounts of specific atoms or molecules to change its properties) or other artificial modifications,” according to the study.

“This is one of the first clear demonstrations of sodium-ion intercalation in pure graphitic materials with such stability,” Atin Pramanik, first author of the study and a postdoctoral associate in Ajayan’s lab, said in the release. “It challenges the belief that pure graphite can’t work with sodium.”

In lab tests, the carbon cones and discs stored about 230 milliamp-hours of charge per gram (mAh/g) by using sodium ions. They still held 151 mAh/g even after 2,000 fast charging cycles. They also worked with potassium-ion batteries.

“We believe this discovery opens up a new design space for battery anodes,” Ajayan added in the release. “Instead of changing the chemistry, we’re changing the shape, and that’s proving to be just as interesting.”

---

This story originally appeared on EnergyCapitalHTX.com.

FAA demands investigation into SpaceX's out-of-control Starship flight

Out of this world

The Federal Aviation Administration is demanding an accident investigation into the out-of-control Starship flight by SpaceX on May 27.

Tuesday's test flight from Texas lasted longer than the previous two failed demos of the world's biggest and most powerful rocket, which ended in flames over the Atlantic. The latest spacecraft made it halfway around the world to the Indian Ocean, but not before going into a spin and breaking apart.

The FAA said Friday that no injuries or public damage were reported.

The first-stage booster — recycled from an earlier flight — also burst apart while descending over the Gulf of Mexico. But that was the result of deliberately extreme testing approved by the FAA in advance.

All wreckage from both sections of the 403-foot (123-meter) rocket came down within the designated hazard zones, according to the FAA.

The FAA will oversee SpaceX's investigation, which is required before another Starship can launch.

CEO Elon Musk said he wants to pick up the pace of Starship test flights, with the ultimate goal of launching them to Mars. NASA needs Starship as the means of landing astronauts on the moon in the next few years.

TMC med-tech company closes $2.5M series A, plans expansion

fresh funding

Insight Surgery, a United Kingdom-based startup that specializes in surgical technology, has raised $2.5 million in a series A round led by New York City-based life sciences investor Nodenza Venture Partners. The company launched its U.S. business in 2023 with the opening of a cleanroom manufacturing facility at Houston’s Texas Medical Center.

The startup says the investment comes on the heels of the U.S. Food and Drug Administration (FDA) granting clearance to the company’s surgical guides for orthopedic surgery. Insight says the fresh capital will support its U.S. expansion, including one new manufacturing facility at an East Coast hospital and another at a West Coast hospital.

Insight says the investment “will provide surgeons with rapid access to sophisticated tools that improve patient outcomes, reduce risk, and expedite recovery.”

Insight’s proprietary digital platform, EmbedMed, digitizes the surgical planning process and allows the rapid design and manufacturing of patient-specific guides for orthopedic surgery.

“Our mission is to make advanced surgical planning tools accessible and scalable across the U.S. healthcare system,” Insight CEO Henry Pinchbeck said in a news release. “This investment allows us to accelerate our plan to enable every orthopedic surgeon in the U.S. to have easy access to personalized surgical devices within surgically meaningful timelines.”

Ross Morton, managing Partner at Nodenza, says Insight’s “disruptive” technology may enable the company to become “the leader in the personalized surgery market.”

The startup recently entered a strategic partnership with Ricoh USA, a provider of information management and digital services for businesses. It also has forged partnerships with the Hospital for Special Surgery in New York City, University of Chicago Medicine, University of Florida Health and UAB Medicine in Birmingham, Alabama.