Ten individuals from Rice University have been named to the second cohort of the Innovation Fellowship program. Photos via Rice.edu

A program with a mission to translate research into innovative startups has named its 2023 cohort of fellows.

Rice University's Innovation Fellows program, which is run by the Liu Idea Lab for Innovation and Entrepreneurship and the Office of Innovation, has announced the 10 innovators that will be joining the program this year. The program, open to Rice faculty and doctoral and postdoctoral students, provides support — funding, mentorship, and more — to move innovation out of labs and into commercialization.

“The Rice Innovation Fellows program is a critical part of our efforts to support innovation and entrepreneurship,” Rice President Reginald DesRoches says in a news release. “These exceptional individuals represent some of the most innovative and promising research being conducted at Rice, and we’re thrilled to support them as they work to bring their ideas to the world.”

According to the release, the 10 members of the 2023 cohort are:

  • Martha Fowler, a doctoral student from the bioengineering lab of Omid Veiseh
  • Carson Cole, a doctoral student from the chemistry lab of Jeff Hartgerink
  • Fatima Ahsan, a doctoral student from the electrical and computer engineering lab of Behnaam Aazhang
  • Siraj Sidhik, a doctoral student from the materials science and nanoengineering lab of Aditya Mohite
  • Roman Zhuravel, a postdoctoral student from the physics and astronomy lab of Guido Pagano
  • Samira Aghlara-Fotovat, a doctoral student from the bioengineering lab of Veiseh
  • Clarke Wilkirson, a doctoral student from the mechanical engineering lab of Peter Lillehoj
  • Yuren Feng, a doctoral student from the civil and environmental engineering lab of Qilin Li
  • Yang Xia, a doctoral student from the chemical and molecular engineering lab of Haotian Wang
  • Thao Vy Nguyen, a doctoral student from the chemical engineering lab of Sibani Lisa Biswal

Each of Rice's Innovation Fellows will receive up to $20,000 in funding, as well as access to the university's network for mentorship and training.

“We're incredibly excited to welcome this exceptional group of researchers into the Innovation Fellows program,” says Yael Hochberg, head of the Rice Entrepreneurship Initiative and faculty director for Lilie, in the release. “We look forward to working with them as they bring their groundbreaking research to market and make a real impact on the world.”

Last year's inaugural cohort in raised more than $1 million in venture capital funding and over $3 million in additional nondilutive funding, as well as earning more than $500,000 in revenue.

Some of the 2022 cohort's accomplishments included Helix Earth Technologies winning the inaugural TEX-E Prize and Sygne Solutions securing second place and $200,000 at the 2023 Rice Business Plan Competition.

Paul Cherukuri, Rice’s vice president for innovation, who recently joined the Houston Innovators Podcast, explains how this is one avenue Rice has for getting innovation off campus and into industry.

“With commercialization of research at the forefront of what Rice University wants to do,” says Cherukuri, "the Innovation Fellows program is the first in a constellation of programs and resources developed by the Office of Innovation to help impactful new ventures overcome the hard tech ‘valley of death’ and transition from the campus to the community, so we can help create the next generation of game-changing company for Houston, Texas and the world,."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

4 Houston-area schools excel with best online degree programs in U.S.

Top of the Class

Four Houston-area universities have earned well-deserved recognition in U.S. News & World Report's just-released rankings of the Best Online Programs for 2026.

The annual rankings offer insight into the best American universities for students seeking a flexible and affordable way to attain a higher education. In the 2026 edition, U.S. News analyzed nearly 1,850 online programs for bachelor's degrees and seven master's degree disciplines: MBA, business (non-MBA), criminal justice, education, engineering, information technology, and nursing.

Many of these local schools are also high achievers in U.S. News' separate rankings of the best grad schools.

Rice University tied with Texas A&M University in College Station for the No. 3 best online master's in information technology program in the U.S., and its online MBA program ranked No. 21 nationally.

The online master's in nursing program at The University of Texas Medical Branch in Galveston was the highest performing master's nursing degree in Texas, and it ranked No. 19 nationally.

Three different programs at The University of Houston were ranked among the top 100 nationwide:
  • No. 18 – Best online master's in education
  • No. 59 – Best online master's in business (non-MBA)
  • No. 89 – Best online bachelor's program
The University of Houston's Clear Lake campus ranked No. 65 nationally for its online master's in education program.

"Online education continues to be a vital path for professionals, parents, and service members seeking to advance their careers and broaden their knowledge with necessary flexibility," said U.S. News education managing editor LaMont Jones in a press release. "The 2026 Best Online Programs rankings are an essential tool for prospective students, providing rigorous, independent analysis to help them choose a high-quality program that aligns with their personal and professional goals."

A little farther outside Houston, two more universities – Sam Houston State University in Huntsville and Texas A&M University in College Station – stood out for their online degree programs.

Sam Houston State University

  • No. 5 – Best online master's in criminal justice
  • No. 30 – Best online master's in information technology
  • No. 36 – Best online master's in education
  • No. 77 – Best online bachelor's program
  • No. 96 – Best online master's in business (non-MBA)
Texas A&M University
  • No. 3 – Best online master's in information technology (tied with Rice)
  • No. 3 – Best online master's in business (non-MBA)
  • No. 8 – Best online master's in education
  • No. 9 – Best online master's in engineering
  • No. 11 – Best online bachelor's program
---

This article originally appeared on CultureMap.com.

Houston wearable biosensing company closes $13M pre-IPO round

fresh funding

Wellysis, a Seoul, South Korea-headquartered wearable biosensing company with its U.S. subsidiary based in Houston, has closed a $13.5 million pre-IPO funding round and plans to expand its Texas operations.

The round was led by Korea Investment Partners, Kyobo Life Insurance, Kyobo Securities, Kolon Investment and a co-general partner fund backed by SBI Investment and Samsung Securities, according to a news release.

Wellysis reports that the latest round brings its total capital raised to about $30 million. The company is working toward a Korea Securities Dealers Automated Quotations listing in Q4 2026 or Q1 2027.

Wellysis is known for its continuous ECG/EKG monitor with AI reporting. Its lightweight and waterproof S-Patch cardiac monitor is designed for extended testing periods of up to 14 days on a single battery charge.

The company says that the funding will go toward commercializing the next generation of the S-Patch, known as the S-Patch MX, which will be able to capture more than 30 biometric signals, including ECG, temperature and body composition.

Wellysis also reports that it will use the funding to expand its Houston-based operations, specifically in its commercial, clinical and customer success teams.

Additionally, the company plans to accelerate the product development of two other biometric products:

  • CardioAI, an AI-powered diagnostic software platform designed to support clinical interpretation, workflow efficiency and scalable cardiac analysis
  • BioArmour, a non-medical biometric monitoring solution for the sports, public safety and defense sectors

“This pre-IPO round validates both our technology and our readiness to scale globally,” Young Juhn, CEO of Wellysis, said in the release. “With FDA-cleared solutions, expanding U.S. operations, and a strong AI roadmap, Wellysis is positioned to redefine how cardiac data is captured, interpreted, and acted upon across healthcare systems worldwide.”

Wellysis was founded in 2019 as a spinoff of Samsung. Its S-Patch runs off of a Samsung Smart Health Processor. The company's U.S. subsidiary, Wellysis USA Inc., was established in Houston in 2023 and was a resident of JLABS@TMC.

Elon Musk vows to launch solar-powered data centers in space

To Outer Space

Elon Musk vowed this week to upend another industry just as he did with cars and rockets — and once again he's taking on long odds.

The world's richest man said he wants to put as many as a million satellites into orbit to form vast, solar-powered data centers in space — a move to allow expanded use of artificial intelligence and chatbots without triggering blackouts and sending utility bills soaring.

To finance that effort, Musk combined SpaceX with his AI business on Monday, February 2, and plans a big initial public offering of the combined company.

“Space-based AI is obviously the only way to scale,” Musk wrote on SpaceX’s website, adding about his solar ambitions, “It’s always sunny in space!”

But scientists and industry experts say even Musk — who outsmarted Detroit to turn Tesla into the world’s most valuable automaker — faces formidable technical, financial and environmental obstacles.

Feeling the heat

Capturing the sun’s energy from space to run chatbots and other AI tools would ease pressure on power grids and cut demand for sprawling computing warehouses that are consuming farms and forests and vast amounts of water to cool.

But space presents its own set of problems.

Data centers generate enormous heat. Space seems to offer a solution because it is cold. But it is also a vacuum, trapping heat inside objects in the same way that a Thermos keeps coffee hot using double walls with no air between them.

“An uncooled computer chip in space would overheat and melt much faster than one on Earth,” said Josep Jornet, a computer and electrical engineering professor at Northeastern University.

One fix is to build giant radiator panels that glow in infrared light to push the heat “out into the dark void,” says Jornet, noting that the technology has worked on a small scale, including on the International Space Station. But for Musk's data centers, he says, it would require an array of “massive, fragile structures that have never been built before.”

Floating debris

Then there is space junk.

A single malfunctioning satellite breaking down or losing orbit could trigger a cascade of collisions, potentially disrupting emergency communications, weather forecasting and other services.

Musk noted in a recent regulatory filing that he has had only one “low-velocity debris generating event" in seven years running Starlink, his satellite communications network. Starlink has operated about 10,000 satellites — but that's a fraction of the million or so he now plans to put in space.

“We could reach a tipping point where the chance of collision is going to be too great," said University at Buffalo's John Crassidis, a former NASA engineer. “And these objects are going fast -- 17,500 miles per hour. There could be very violent collisions."

No repair crews

Even without collisions, satellites fail, chips degrade, parts break.

Special GPU graphics chips used by AI companies, for instance, can become damaged and need to be replaced.

“On Earth, what you would do is send someone down to the data center," said Baiju Bhatt, CEO of Aetherflux, a space-based solar energy company. "You replace the server, you replace the GPU, you’d do some surgery on that thing and you’d slide it back in.”

But no such repair crew exists in orbit, and those GPUs in space could get damaged due to their exposure to high-energy particles from the sun.

Bhatt says one workaround is to overprovision the satellite with extra chips to replace the ones that fail. But that’s an expensive proposition given they are likely to cost tens of thousands of dollars each, and current Starlink satellites only have a lifespan of about five years.

Competition — and leverage

Musk is not alone trying to solve these problems.

A company in Redmond, Washington, called Starcloud, launched a satellite in November carrying a single Nvidia-made AI computer chip to test out how it would fare in space. Google is exploring orbital data centers in a venture it calls Project Suncatcher. And Jeff Bezos’ Blue Origin announced plans in January for a constellation of more than 5,000 satellites to start launching late next year, though its focus has been more on communications than AI.

Still, Musk has an edge: He's got rockets.

Starcloud had to use one of his Falcon rockets to put its chip in space last year. Aetherflux plans to send a set of chips it calls a Galactic Brain to space on a SpaceX rocket later this year. And Google may also need to turn to Musk to get its first two planned prototype satellites off the ground by early next year.

Pierre Lionnet, a research director at the trade association Eurospace, says Musk routinely charges rivals far more than he charges himself —- as much as $20,000 per kilo of payload versus $2,000 internally.

He said Musk’s announcements this week signal that he plans to use that advantage to win this new space race.

“When he says we are going to put these data centers in space, it’s a way of telling the others we will keep these low launch costs for myself,” said Lionnet. “It’s a kind of powerplay.”