A medical device designed by a UH professor will close the loop with high frequency brain waves to prevent seizures from occurring. Photo via uh.edu

A professor at the University of Houston has received a federal grant aimed at helping stop epileptic seizures before they start.

The BRAIN Initiative at the National Institute of Neurological Disorders and Stroke awarded the $3.7 million grant to Nuri Firat Ince, an associate professor of biomedical engineering at UH. The grant will go toward Ince's work to create a seizure-halting device based on his research.

According to UH, Ince has reduced by weeks the time it takes to locate the seizure onset zone (SOZ), the part of the brain that causes seizures in patients with epilepsy. He's done this by detecting high-frequency oscillations (HFO) forming "repetitive waveform patterns" that identify their location in the SOZ.

Ince plans to use those HFOs to help control seizures. But he first must determine whether the HFOs can be detected with an implantable closed-loop device, enabling delivery of electrical stimulation that can control seizures. The device is called a brain interchange system. A closed-loop system supplies stimulation only when it detects the onset of a seizure.

Ince's neurotechnology partner, Cortec GMBH of Freiburg, Germany, is supplying the brain interchange system. Houston's Baylor College of Medicine eventually will be the site where medical professionals implant the device in pediatric and adult epilepsy patients.

"If the outcomes of our research in acute settings become successful, we will execute a clinical trial and run our methods with the implanted … system in a chronic ambulatory setting," Ince says in a UH news release.

Research published recently in the journal AJOB Neuroscience found that a closed-loop brain implant being used to treat refractory epilepsy does not alter patients' personalities or self-perception.

Nuri Firat Ince associate professor of biomedical engineering. Photo via uh.edu

"Next-generation brain stimulation devices can modulate brain activity without human intervention, which raises new ethical and policy questions," lead author Tobias Haeusermann of the University of California, San Francisco, says in a news release. "But while there is a great deal of speculation about the potential consequences of these innovative treatments, very little is currently known about patients' experiences of any device approved for clinical use."

The study, however, found no evidence that the device Haeusermann and his colleagues studied had changed patients' personalities or self-perception.

Haeusermann and his fellow researchers based their study on a closed-loop device that's currently available. In 2013, the U.S. Food and Drug Administration (FDA) approved this brain stimulation system for treatment of refractory epilepsy. It's the first clinically approved and commercially available closed-loop brain stimulation device for epilepsy patients. Refractory epilepsy occurs when medication no longer controls seizures.

According to a research article published in 2018, epilepsy ranks among the most common neurological disorders, affecting about 1% of the global population. For patients who suffer seizures that cannot be treated with drugs, a frequent treatment is surgical removal of the SOZ.

In this country, about 3 million adults and 470,000 children have epilepsy, according to the U.S. Centers for Disease Control and Prevention, including nearly 293,000 Texans. In the U.S., epilepsy is the fourth most common neurological disorder, preceded by migraine, stroke and Alzheimer's disease, the Epilepsy Foundation of Michigan says.

About 150,000 Americans are diagnosed each year with epilepsy.

Epilepsy is prevalent among people with autism, cerebral palsy, Down syndrome, and intellectual disabilities.

About 30 types of seizure occur among the more than 60 types of epilepsy, the Michigan foundation says. A seizure briefly disturbs electrical activity in the braining, causing temporary changes in movement, awareness, feelings, behavior, and other bodily functions.

Daily medication is the standard treatment for epilepsy, according to the Michigan foundation. Still, 30 percent to 40 percent of people with epilepsy continue to experience seizures.

Each year, U.S. health care costs associated with epilepsy add up to roughly $28 billion, according to the American Journal of Managed Care.

"Most people with epilepsy are able to lead productive and fulfilling lives, but for many, epilepsy can be a devastating condition," the foundation says.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-based HPE wins $931M contract to upgrade military data centers

defense data centers

Hewlett Packard Enterprise (HPE), based in Spring, Texas, which provides AI, cloud, and networking products and services, has received a $931 million contract to modernize data centers run by the federal Defense Information Systems Agency.

HPE says it will supply distributed hybrid multicloud technology to the federal agency, which provides combat support for U.S. troops. The project will feature HPE’s Private Cloud Enterprise and GreenLake offerings. It will allow DISA to scale and accelerate communications, improve AI and data analytics, boost IT efficiencies, reduce costs and more, according to a news release from HPE.

The contract comes after the completion of HPE’s test of distributed hybrid multicloud technology at Defense Information Systems Agency (DISA) data centers in Mechanicsburg, Pennsylvania, and Ogden, Utah. This technology is aimed at managing DISA’s IT infrastructure and resources across public and private clouds through one hybrid multicloud platform, according to Data Center Dynamics.

Fidelma Russo, executive vice president and general manager of hybrid cloud at HPE, said in a news release that the project will enable DISA to “deliver innovative, future-ready managed services to the agencies it supports that are operating across the globe.”

The platform being developed for DISA “is designed to mirror the look and feel of a public cloud, replicating many of the key features” offered by cloud computing businesses such as Amazon Web Services (AWS), Microsoft Azure and Google Cloud Platform, according to The Register.

In the 1990s, DISA consolidated 194 data centers into 16. According to The Register, these are the U.S. military’s most sensitive data centers.

More recently, in 2024, the Fort Meade, Maryland-based agency laid out a five-year strategy to “simplify the network globally with large-scale adoption of command IT environments,” according to Data Center Dynamics.

Astros and Rockets launch new streaming service for Houston sports fans

Sports Talk

Houston sports fans now have a way to watch their favorite teams without a cable or satellite subscription. Launched December 3, the Space City Home Network’s SCHN+ service allows consumers to watch the Houston Astros and Houston Rockets via iOS, Apple TV, Android, Amazon Fire TV, or web browser.

A subscription to SCHN+ allows sports fans to watch all Astros and Rockets games, as well as behind-the-scenes features and other on-demand content. It’s priced at $19.99 per month or $199.99 annually (plus tax). People who watch Space City Network Network via their existing cable or satellite service will be able to access SCHN+ at no additional charge.

As the Houston Chronicle notes, the Astros and Rockets were the only MLB and NBA teams not to offer a direct-to-consumer streaming option.

“We’re thrilled to offer another great option to ensure fans have access to watch games, and the SCHN+ streaming app makes it easier than ever to cheer on the Rockets,” Rockets alternate governor Patrick Fertitta said in a statement.

“Providing fans with a convenient way to watch their favorite teams, along with our network’s award-winning programming, was an essential addition. This season feels special, and we’re committed to exploring new ways to elevate our broadcasts for Rockets fans to enjoy.”

Astros owner Jim Crane echoed Feritta’s comments, adding, “Providing fans options on how they view our games is important as we continue to grow the game – we want to make it accessible to as large an audience as possible. We are looking forward to the 2026 season and more Astros fans watching our players compete for another championship.”

SCHN+ is available to customers in Texas; Louisiana; Arkansas; Oklahoma; and the following counties in New Mexico: Dona Ana, Eddy, Lea, Chaves, Roosevelt, Curry, Quay, Union, and Debaca. Fans outside these areas will need to subscribe to the NBA and MLB out-of-market services.

---

This article originally appeared on CultureMap.com.

Rice University researchers unveil new model that could sharpen MRI scans

MRI innovation

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI.

In a study recently published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Previous models only approximated how water molecules relaxed around contrasting agents. However, through this new model, known as the NMR eigenmodes framework, the research team has uncovered the “full physical equations” to explain the process.

“The concept is similar to how a musical chord consists of many notes,” Thiago Pinheiro, the study’s first author, a Rice doctoral graduate in chemical and biomolecular engineering and postdoctoral researcher in the chemical sciences division at Oak Ridge National Laboratory, said in a news release. “Previous models only captured one or two notes, while ours picks up the full harmony.”

According to Rice, the findings could lead to the development and application of new contrast agents for clearer MRIs in medicine and materials science. Beyond MRIs, the NMR relaxation method could also be applied to other areas like battery design and subsurface fluid flow.

“In the present paper, we developed a comprehensive theory to interpret those previous molecular dynamics simulations and experimental findings,” Dilipkumar Asthagiri, a senior computational biomedical scientist in the National Center for Computational Sciences at Oak Ridge National Laboratory, said in the release. ”The theory, however, is general and can be used to understand NMR relaxation in liquids broadly.”

The team has also made its code available as open source to encourage its adoption and further development by the broader scientific community.

“By better modeling the physics of nuclear magnetic resonance relaxation in liquids, we gain a tool that doesn’t just predict but also explains the phenomenon,” Walter Chapman, a professor of chemical and biomolecular engineering at Rice, added in the release. “That is crucial when lives and technologies depend on accurate scientific understanding.”

The study was backed by The Ken Kennedy Institute, Rice Creative Ventures Fund, Robert A. Welch Foundation and Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory.