Just like any workplace, labs can get toxic. Graphic byMiguel Tovar/University of Houston

There are many types of toxic bosses. The Micromanager. The Narcissist. The Incompetent Boss. The list goes on. But labs led by toxic PIs not only make for an abysmal workplace they can actually encourage research misconduct.

According to Charles Wood, author of “When lab leaders take too much control,” there are two types of toxic labs most at risk for this type of behavior: the executive model and the competition model.

Executive model

Wood described the executive approach to lab management as one where the mentor sets expectations for trainees, often with a particular goal in mind. In its negative form, this includes specifying experimental outcomes and instructing trainees on particular experiments to achieve a desired result.

It comes as no surprise that experimenting with the answer already in mind goes against scientific principles. Spiking biological samples, manipulating instruments – all these things have been suspected in labs according to the U.S. government’s Office of Research Integrity. The first line of defense is having the investigators replicate their experiment while being closely supervised. The consequences of misconduct, if the allegations are found to be credible, can include being debarred from further federal funding and having data sequestered.

Competition model

The competition model pits graduate students or postdocs against one another. In this case, whoever gets the result first is rewarded, while the others are punished. This makes a perfect breeding ground for misconduct. Imagine if a foreign student’s citizenship status is affected by whether or not they can produce the results their PI wants them to obtain. Of the competition model, Wood said that what students and postdocs learn can be catastrophic: “competition over collaboration and conformity over creativity.” He posits that researchers graduating from the PI’s toxic lab may be influenced to drop out of science completely or go on to run their own labs in a toxic way.

A correlation between mentors and ethical decision-making

Michael D. Mumford, et al. in “Environmental influences on ethical decision making: Climate and environmental predictors of research integrity” (Ethics & Behavior journal) found that for first-year doctoral students, “environmental experiences (including professional leadership) exert stronger effects on ethical decision making than the climate of the work group.”

Wood also noted that, regardless of the management style, certain scientists may be more prone to cheating. However, active involvement and openness by the principal investigator can serve as a preventive measure against this.

What can you do about it?

Chris Sowers in the “Toxic Boss Syndrome: How To Recover and Get Your Mojo Back” episode of his Better Humans podcast, shared how a few toxic bosses affected his job performance, self esteem and even interpersonal relationships. His first piece of advice is to get out quickly, even if you need to take a pay cut – he says a few thousand dollars are not worth the hit to your mental and physical health.

Vetting your lab’s PI will help enormously. Does the PI have a good track record of being a fair and kind mentor?

“If your principal investigator starts to exhibit toxic behavior, address this with him or her,” said Wood. He goes on to advise that “if you find yourself in a truly toxic environment, seek guidance from a graduate coordinator, assistant dean or other authority figure who oversees the pre- or postdoctoral training programs — and ask for help in finding another mentor.”

The Big Idea

No one has time or energy to dedicate to a toxic workplace. The costs are way too high to risk manipulating data. For one, all authors on a paper will be held responsible for the misconduct– not to mention the physical and mental stress a toxic lab will invite into your life.

------

This article originally appeared on the University of Houston's The Big Idea. Sarah Hill, the author of this piece, is the communications manager for the UH Division of Research.

"ChatGPT, even with improved filters or as it continues to evolve, will never be able to replace the critical and creative thinking we need in these disciplines.” Graphic byMiguel Tovar/University of Houston

Houston expert: Analyzing the impact of generative AI on research

houston voices

Researchers have to write extremely specific papers that require higher-order thinking — will an intuitive AI program like OpenAI’s ChatGPT be able to imitate the vocabulary, grammar and most importantly, content, that a scientist or researcher would want to publish? And should it be able to?

University of Houston’s Executive Director of the Research Integrity and Oversight (RIO) Office Kirstin Holzschuh puts it this way: “Scientists are out-of-the box thinkers – which is why they are so important to advancements in so many areas. ChatGPT, even with improved filters or as it continues to evolve, will never be able to replace the critical and creative thinking we need in these disciplines.”

“A toy, not a tool”

The Atlantic published, “ChatGPT Is Dumber Than You Think,” with a subtitle advising readers to “Treat it like a toy, not a tool.” The author, Ian Bogost, indulged in the already tired trope of asking ChatGPT to write about “ChatGPT in the style of Ian Bogost.” The unimaginative but overall passable introduction to his article was proof that, “any responses it generates are likely to be shallow and lacking in depth and insight.”

Bogost expressed qualms similar to those of Ezra Klein, the podcaster behind, “A Skeptical Take on the AI Revolution.” Klein and his guest, NYU psychology and neural science professor Gary Marcus, mostly questioned the reliability and truthfulness of the chatbot. Marcus calls the synthesizing of its databases and the “original” text it produces nothing more than “cut and paste” and “pastiche.” The algorithm used by the program has been likened to auto-completion, as well.

However, practical use cases are increasingly emerging, which blur the lines between technological novelty and professional utility. Whether writing working programming code or spitting out a rough draft of an essay, ChatGPT does have a formidable array of competencies. Even if just how competent it is remains to be seen. All this means that as researchers look for efficiencies in their work, ChatGPT and other AI tools will become increasingly appealing as they mature.

Pseudo-science and reproducibility

The Big Idea reached out to experts across the country to determine what might be the most pressing problems and what might be potential successes for research now that ChatGPT is readily accessible.

Holzschuh, stated that there are potential uses, but also potential misuses of ChatGPT in research: “AI’s usefulness in compiling research proposals or manuscripts is currently limited by the strength of its ability to differentiate true science from pseudo-science. From where does the bot pull its conclusions – peer-reviewed journals or internet ‘science’ with no basis in reproducibility?” It’s “likely a combination of both,” she says. Without clear attribution, ChatGPT is problematic as an information source.

Camille Nebeker is the Director of Research Ethics at University of California, San Diego, and a professor who specializes in human research ethics applied to emerging technologies. Nebeker agrees that because there is no way of citing the original sources that the chatbot is trained on, researchers need to be cautious about accepting the results it produces. That said, ChatGPT could help to avoid self-plagiarism, which could be a benefit to researchers. “With any use of technologies in research, whether they be chatbots or social media platforms or wearable sensors, researchers need to be aware of both the benefits and risks.”

Nebeker’s research team at UC San Diego is conducting research to examine the ethical, legal and social implications of digital health research, including studies that are using machine learning and artificial intelligence to advance human health and wellbeing.

Co-authorship

The conventional wisdom in academia is “when in doubt, cite your source.” ChatGPT even provides some language authors can use when acknowledging their use of the tool in their work: “The author generated this text in part with GPT-3, OpenAI’s large-scale language-generation model. Upon generating draft language, the author reviewed, edited, and revised the language to their own liking and takes ultimate responsibility for the content of this publication.” A short catchall statement in your paper will likely not pass muster.

Even when being as transparent as possible about how AI might be used in the course of research or in development of a manuscript, the question of authorship is still fraught. Holden Thorp, editor-in-chief of the Science, writes in Nature, that “we would not allow AI to be listed as an author on a paper we published, and use of AI-generated text without proper citation could be considered plagiarism.” Thorp went on to say that a co-author of an experiment must both consent to being a co-author and take responsibility for a study. “It’s really that second part on which the idea of giving an AI tool co-authorship really hits a roadblock,” Thorp said.

Informed consent

On NBC News, Camille Nebeker stated that she was concerned there was no informed consent given by the participants of a study that evaluated the use of a ChatGPT to support responses given to people using Koko, a mental health wellness program. ChatGPT wrote responses either in whole or in part to the participants seeking advice. “Informed consent is incredibly important for traditional research,” she said. If the company is not receiving federal money for the research, there isn’t requirement to obtain informed consent. “[Consent] is a cornerstone of ethical practices, but when you don’t have the requirement to do that, people could be involved in research without their consent, and that may compromise public trust in research.”

Nebeker went on to say that study information that is conveyed to a prospective research participant via the informed consent process may be improved with ChatGPT. For instance, understanding complex study information could be a barrier to informed consent and make voluntary participation in research more challenging. Research projects involve high-level vocabulary and comprehension, but informed consent is not valid if the participant can’t understand the risks, etc. “There is readability software, but it only rates the grade-level of the narrative, it does not rewrite any text for you,” Nebeker said. She believes that one could input an informed consent communication into ChatGPT and ask for it to be rewritten at a sixth to eighth grade level (which is the range that Institutional Review Boards prefer.)

Can it be used equitably?

Faculty from the Stanford Accelerator for Learning, like Victor Lee, are already strategizing ways for intuitive AI to be used. Says Lee, “We need the use of this technology to be ethical, equitable, and accountable.”

Stanford’s approach will involve scheduling listening sessions and other opportunities to gather expertise directly from educators as to how to strike an effective balance between the use of these innovative technologies and its academic mission.

The Big Idea

Perhaps to sum it up best, Holzschuh concluded her take on the matter with this thought: “I believe we must proceed with significant caution in any but the most basic endeavors related to research proposals and manuscripts at this point until bot filters significantly mature.”

------

This article originally appeared on the University of Houston's The Big Idea. Sarah Hill, the author of this piece, is the communications manager for the UH Division of Research.

Understanding the Fly America Act is important for all researchers planning government-funded travel. Graphic byMiguel Tovar/University of Houston

What Houston researchers should know about the Fly America Act

houston voices

Commercial aviation witnessed a transformative shift following World War II. Initially reserved for military purposes, commercial air travel began to flourish as civilians embraced its convenience. This surge in air travel highlighted the necessity for regulating the industry.

In response, the Federal Aviation Administration, or FAA, emerged from the Federal Aviation Act of 1958, later becoming a component of the Department of Transportation under the Department of Transportation Act in 1967.

The evolution of air travel regulation continued in 1974 with the enactment of the Fly America Act. Designed to safeguard U.S. interests in international air travel funded by the government, this act prioritizes U.S. airline carriers. This initiative serves both to support domestic airlines and promote the U.S. aviation industry on a global stage when passengers travel on federal funds.

What some might not know is this legislation can impact researchers and their organizations.

Importance for researchers

Adhering to the Fly America Act applies not only to federal government employees but also their dependents, grantees, and other travelers funded by federal resources. Even foreign researchers visiting the U.S. under federally funded grants must choose U.S. flag air carriers for their travel.

A U.S. flag air carrier should not be confused with a traditional flag carrier. These are airlines that have historically been government-owned or are otherwise closely tied to the identity of a particular country, like British Airways or Aeroméxico. U.S. flag air carriers encompass a wide range of airlines, including smaller entities like Air Wisconsin Airlines and Avelo, a new carrier based in Houston. You can find a comprehensive list of U.S. flag air carriers here.

Navigating exceptions

While the Fly America Act carries strict guidelines, exceptions do exist. Instances where no U.S. flag air carriers serve the destination or where such carriers would extend the trip by over 24 hours warrant special consideration. In these cases, maintaining meticulous records is essential in order to validate the use of non-U.S. airlines. A list of exceptions can be found here.

Open Skies Agreements introduce another facet to the Fly America Act. These agreements between the U.S. Government and other countries enable travelers, including researchers, to use foreign air carriers for government-funded international travel. Several countries, including those in the European Union, Australia, Switzerland, and Japan, maintain Open Skies Agreements. Flights on British Airways are no longer permitted under an Open Skies Agreement due to the United Kingdom’s exit from the European Union. Proper documentation is essential when claiming a Fly America Act exception, even if covered under an Open Skies Agreement. Detailed travel itineraries, internal agency forms, and evidence of a Fly America exception must be included in travel receipts.

The Big Idea

Compliance with the Fly America Act ensures your travel expenses are reimbursable on government grants. It’s important to remember that cost and convenience are not exceptions to the act. A thorough understanding of Fly America Act’s provisions and exceptions is a must before you book your next flight.

------

This article originally appeared on the University of Houston's The Big Idea. Sarah Hill, the author of this piece, is the communications manager for the UH Division of Research.

Absolutism has no bearing on the scientific process. Graphic byMiguel Tovar/University of Houston

Why absolutism has no place in research, according to University of Houston

Houston voices

Science, like politics, can elicit polarizing opinions. But with an ever-expanding body of knowledge — and the especially dizzying flurry of findings during the pandemic — is it fair to say that views on science are becoming more extreme?

Measuring the polarization

“A standard way of measuring polarization in the U.S. is asking Democrats and Republicans how warmly they feel toward members of their own group and members of their outgroup on a feeling thermometer from 0 to 100,” said Jessica Gottlieb, professor at the UH Hobby School of Public Affairs. “The difference in ingroup-outgroup warmth is then considered a measure of polarization. This has been measured by the American National Elections Studies systematically over the past several decades, and indeed the level of affective polarization has been increasing in the U.S.”

“Absolutism is the culprit.”

In an article in Foreign Affairs entitled, “How Extremism Went Mainstream,” the author notes that “the tools that authorities use to combat extremists become less useful when the line between the fringe and the center starts to blur.”

Science has traditionally been one such tool. However, this extremism — where everything is black and white — in politics, has made its unfortunate way into academia. John Lienhard is a professor at the University of Houston and host of “Engines of Our Ingenuity,” a national radio program which has been telling stories of how creativity has shaped our culture since 1988. According to Lienhard, extremism — as seen within the scientific enterprise — goes by a different name.

“Absolutism is the culprit – the need on the part of so many of us to know The Right Answer. The absolutists in the world will glom onto whatever vehicle suits them – religion, politics, education, and ultimately, science itself,” said Lienhard. In other words, good scientists amend and revise, while “the absolutist finds the honest practice of science hateful,” he says, “because science is a way of life where everything lies open to question.”

A series of approximations

In an article entitled, “If You Say Science Is Right You’re Wrong,” professor Naomi Oreskes introduces this quote by Nobel Prize–winning physicist Steven Weinberg:

“Even though a scientific theory is in a sense a social consensus, it is unlike any other sort of consensus in that it is culture-free and permanent.”

Well, no. Even a modest familiarity with the history of science offers many examples of matters that scientists thought they had resolved, only to discover that they needed to be reconsidered.

Some familiar examples are Earth as the center of the universe, the absolute nature of time and space, the stability of continents and the cause of infectious disease.

Absolutism in science is dangerous. Good scientists know how important it is to ask probing questions. In his book entitled, Science versus Absolutism: Science Approaches Truth by a Series of Approximations, the chemist T. Swann Harding asks the question: “What are scientific laws?” He goes on to answer:

“Most people appear to regard them as singularly exact and unalterable things … to violate them brings swift retribution. They are unchanging and eternal in character. Yet the so-called laws of science are really rules pieced together by man on a basis of much observation and experiment.”

In the past, so much of science was just plain wrong – until another researcher came around and amended the original belief (think Galileo). How are our modern times any different? There are still many situations where scientific thought has needed to be amended. Even as recently as the COVID crisis, researchers were revising their thoughts about the spread and contagiousness of the disease.

Allowing for dissent

In a Scientific American blog, Matt Nolan writes that “Dissent in Science Is Essential–up to a Point.” In it, he said, “It is the public who pay the price when marginalized science informs policy. History reminds us this is unsafe territory.” However, Lienhard adds that Einstein set limits on the validity of Newton’s laws just as nuclear fission provided an amendment to the conservation of energy law. There is always a new question to formalize where experimentation is being conducted.

Referred to as the “file drawer effect,” another predicament occurs when a researcher does not get the answer they were expecting, and therefore, decides to not publish the negative findings. Every answer is meaningful. And sometimes a negative answer — or no answer — is an answer.

Dissent, and perhaps a certain measure of disappointment, is a critical part of scientific inquiry.

The Big Idea

Science can be thought of as the best we know to the degree we understand a given problem at a given place and time. Absolutism has no bearing on the scientific process and in some cases actively obscures and colors that understanding. And that’s not black and white at all; that’s about as gray as it gets.

------

This article originally appeared on the University of Houston's The Big Idea. Sarah Hill, the author of this piece, is the communications manager for the UH Division of Research.

If there are fewer grant proposals, does that mean innovation has slowed? UH gets to the bottom of the question. Graphic byMiguel Tovar/University of Houston

University of Houston: What a drop in NSF proposals means for the country's rate of innovation

houston voices

A 17 percent drop in proposals over the past decade to the National Science Foundation may be a mixed blessing.

A consistently rising budget – and this is in billions of dollars – is the preferred method of keeping the number of funded proposals ever higher. But a dip in the number of proposals submitted in the first place can have a similar effect of increasing the number of funded proposals, since the pool of submissions is much smaller.

In an article for Science Magazine, author Jeffrey Mervis poses the question: Has there been a decline in grant-worthy ideas? In NSF’s biology sector, Mervis notes that “demand has tumbled by 50 percent over the decade and the chances of winning a grant have doubled, from 18 percent in 2011 to 36 percent in 2020.” NSF’s leadership suggests two possible reasons for this phenomenon.

Eliminating fixed deadlines

“Dear Colleague” letters went out to numerous directorates within the NSF notifying PIs that fixed deadlines for small projects ($500,000 and less) would be taken out of the equation. For instance, the Directorate for Computer and Information Science and Engineering’s letter read: “in order to allow principal investigators (PIs) more flexibility and to better facilitate interdisciplinary research across disciplines” deadlines would be eliminated. The letter goes on to state that by eliminating fixed deadlines, PIs will be free to think more creatively and collaboratively – without the added stress of a deadline.

Wouldn’t less stress mean more applications? This doesn’t seem to be the case. In one instance, according to another article in Science, proposals dropped when the program ceased annual deadlines and replaced them with rolling deadlines.

Reducing stress for grant reviewers

That article goes on to say that these changes alleviate the strain on the grant reviewers without lowering standards. James Olds, assistant director of the Directorate for Biological Sciences, anticipated that the NSF program managers would get somewhat of a break, and that the new policy would relieve university administrators who process the applications from being overwhelmed.

Other factors at play

“It is highly unlikely there was one specific reason for the decrease,” said David Schultz, assistant vice president for Sponsored Projects in the Office of Contracts and Grants at the University of Houston, “but rather multiple factors contributing over time. One potential cause is that many major research institutions are diversifying their funding sources away from NSF and into other federal agencies more aligned with their strategic areas of research interest, such as NIH, DOD, and DOE. The NIH has seen an 11 percent increase in proposals over the same period, from 49,592 in 2011 to 55,038 in 2020.”

Tenure

“Another component is the documented decrease in the number of tenured faculty across the nation. Generally tenured faculty are more research-focused, as their ability to obtain externally funded research is a major criterion for promotion and tenure,” said Schultz. “While this may lead to fewer proposals, it does encourage new tenure track faculty to focus more efforts on the higher likelihood of being awarded an NSF grant.”

The Big Idea

Some people work better and more efficiently when presented with a deadline. Could that be the reason fewer proposals are being turned in? In his article, Mervis, deliberates over whether the number of proposals means that the nation is innovating more slowly than before. But how could that be?

The National Science Board, NSF’s presidentially appointed oversight committee, is trying to get to the bottom of the issue so as to mitigate it. Olds stands by the decision to remove deadlines, pointing out that it should be the strength of the proposal not the threat of a deadline which motivates the research project.

Schultz sees a silver lining. “With fewer proposals being submitted to the NSF, the shift creates an opportunity for smaller, emerging universities to increase their proposal submission and success rates.”

------

This article originally appeared on the University of Houston's The Big Idea. Sarah Hill, the author of this piece, is the communications manager for the UH Division of Research.

Every situation is unique and deserves a one-of-the-kind data management plan, not a one-size-fits-all solution. Graphic byMiguel Tovar/University of Houston

Houston research: Why you need a data management plan

Houston voices

Why do you need a data management plan? It mitigates error, increases research integrity and allows your research to be replicated – despite the “replication crisis” that the research enterprise has been wrestling with for some time.

Error

There are many horror stories of researchers losing their data. You can just plain lose your laptop or an external hard drive. Sometimes they are confiscated if you are traveling to another country — and you may not get them back. Some errors are more nuanced. For instance, a COVID-19 repository of contact-traced individuals was missing 16,000 results because Excel can’t exceed 1 million lines per spreadsheet.

Do you think a hard drive is the best repository? Keep in mind that 20 percent of hard drives fail within the first four years. Some researchers merely email their data back and forth and feel like it is “secure” in their inbox.

The human and machine error margins are wide. Continually backing up your results, while good practice, can’t ensure that you won’t lose invaluable research material.

Repositories

According to Reid Boehm, Ph.D., Research Data Management Librarian at the University of Houston Libraries, your best bet is to utilize research data repositories. “The systems and the administrators are focused on file integrity and preservation actions to mitigate loss and they often employ specific metadata fields and documentation with the content,” Boehm says of the repositories. “They usually provide a digital object identifier or other unique ID for a persistent record and access point to these data. It’s just so much less time and worry.”

Integrity

Losing data or being hacked can challenge data integrity. Data breaches do not only compromise research integrity, they can also be extremely expensive! According to Security Intelligence, the global average cost of a data breach in a 2019 study was $3.92 million. That is a 1.5 percent increase from the previous year’s study.

Sample size — how large or small a study was — is another example of how data integrity can affect a study. Retraction Watch removes approximately 1,500 articles annually from prestigious journals for “sloppy science.” One of the main reasons the papers end up being retracted is that the sample size was too small to be a representative group.

Replication

Another metric for measuring data integrity is whether or not the experiment can be replicated. The ability to recreate an experiment is paramount to the scientific enterprise. In a Nature article entitled, 1,500 scientists lift the lid on reproducibility, “73 percent said that they think that at least half of the papers can be trusted, with physicists and chemists generally showing the most confidence.”

However, according to Kelsey Piper at Vox, “an attempt to replicate studies from top journals Nature and Science found that 13 of the 21 results looked at could be reproduced.”

That's so meta

The archivist Jason Scott said, “Metadata is a love note to the future.” Learning how to keep data about data is a critical part of reproducing an experiment.

“While this will be always be determined by a combination of project specifics and disciplinary considerations, descriptive metadata should include as much information about the process as possible,” said Boehm. Details of workflows, any standard operating procedures and parameters of measurement, clear definitions of variables, code and software specifications and versions, and many other signifiers ensure the data will be of use to colleagues in the future.

In other words, making data accessible, useable and reproducible is of the utmost importance. You make reproducing experiments that much easier if you are doing a good job of capturing metadata in a consistent way.

The Big Idea

A data management plan includes storage, curation, archiving and dissemination of research data. Your university’s digital librarian is an invaluable resource. They can answer other tricky questions as well: such as, who does data belong to? And, when a post-doctoral student in your lab leaves the institution, can s/he take their data with them? Every situation is unique and deserves a one-of-the-kind data management plan, not a one-size-fits-all solution.

------

This article originally appeared on the University of Houston's The Big Idea. Sarah Hill, the author of this piece, is the communications manager for the UH Division of Research.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

New Houston venture studio emerges to target early-stage hardtech, energy transition startups

funding the future

The way Doug Lee looks at it, there are two areas within the energy transition attracting capital. With his new venture studio, he hopes to target an often overlooked area that's critical for driving forward net-zero goals.

Lee describes investment activity taking place in the digital and software world — early stage technology that's looking to make the industry smarter. But, on the other end of the spectrum, investment activity can be found on massive infrastructure projects.

While both areas need funding, Lee has started his new venture studio, Flathead Forge, to target early-stage hardtech technologies.

“We are really getting at the early stage companies that are trying to develop technologies at the intersection of legacy industries that we believe can become more sustainable and the energy transition — where we are going. It’s not an ‘if’ or ‘or’ — we believe these things intersect,” he tells EnergyCapital.

Specifically, Lee's expertise is within the water and industrial gas space. For around 15 years, he's made investments in this area, which he describes as crucial to the energy transition.

“Almost every energy transition technology that you can point to has some critical dependency on water or gas,” he says. “We believe that if we don’t solve for those things, the other projects won’t survive.”

Lee, and his brother, Dave, are evolving their family office to adopt a venture studio model. They also sold off Azoto Energy, a Canadian oilfield nitrogen cryogenic services business, in December.

“We ourselves are going through a transition like our energy is going through a transition,” he says. “We are transitioning into a single family office into a venture studio. By doing so, we want to focus all of our access and resources into this focus.”

At this point, Flathead Forge has seven portfolio companies and around 15 corporations they are working with to identify their needs and potential opportunities. Lee says he's gearing up to secure a $100 million fund.

Flathead also has 40 advisers and mentors, which Lee calls sherpas — a nod to the Flathead Valley region in Montana, which inspired the firm's name.

“We’re going to help you carry up, we’re going to tie ourselves to the same rope as you, and if you fall off the mountain, we’re falling off with you,” Lee says of his hands-on approach, which he says sets Flathead apart from other studios.

Another thing that's differentiating Flathead Forge from its competition — it's dedication to giving back.

“We’ve set aside a quarter of our carried interest for scholarships and grants,” Lee says.

The funds will go to scholarships for future engineers interested in the energy transition, as well as grants for researchers studying high-potential technologies.

“We’re putting our own money where our mouth is,” Lee says of his thesis for Flathead Forge.

------

This article originally ran on EnergyCapital.

Houston-based lunar mission's rocky landing and what it means for America's return to the moon

houston, we have a problem

A private U.S. lunar lander tipped over at touchdown and ended up on its side near the moon’s south pole, hampering communications, company officials said Friday.

Intuitive Machines initially believed its six-footed lander, Odysseus, was upright after Thursday's touchdown. But CEO Steve Altemus said Friday the craft “caught a foot in the surface," falling onto its side and, quite possibly, leaning against a rock. He said it was coming in too fast and may have snapped a leg.

“So far, we have quite a bit of operational capability even though we’re tipped over," he told reporters.

But some antennas were pointed toward the surface, limiting flight controllers' ability to get data down, Altemus said. The antennas were stationed high on the 14-foot (4.3-meter) lander to facilitate communications at the hilly, cratered and shadowed south polar region.

Odysseus — the first U.S. lander in more than 50 years — is thought to be within a few miles (kilometers) of its intended landing site near the Malapert A crater, less than 200 miles (300 kilometers) from the south pole. NASA, the main customer, wanted to get as close as possible to the pole to scout out the area before astronauts show up later this decade.

NASA's Lunar Reconnaissance Orbiter will attempt to pinpoint the lander's location, as it flies overhead this weekend.

With Thursday’s touchdown, Intuitive Machines became the first private business to pull off a moon landing, a feat previously achieved by only five countries. Japan was the latest country to score a landing, but its lander also ended up on its side last month.

Odysseus' mission was sponsored in large part by NASA, whose experiments were on board. NASA paid $118 million for the delivery under a program meant to jump-start the lunar economy.

One of the NASA experiments was pressed into service when the lander's navigation system did not kick in. Intuitive Machines caught the problem in advance when it tried to use its lasers to improve the lander's orbit. Otherwise, flight controllers would not have discovered the failure until it was too late, just five minutes before touchdown.

“Serendipity is absolutely the right word,” mission director Tim Crain said.

It turns out that a switch was not flipped before flight, preventing the system's activation in space.

Launched last week from Florida, Odysseus took an extra lap around the moon Thursday to allow time for the last-minute switch to NASA's laser system, which saved the day, officials noted.

Another experiment, a cube with four cameras, was supposed to pop off 30 seconds before touchdown to capture pictures of Odysseus’ landing. But Embry-Riddle Aeronautical University’s EagleCam was deliberately powered off during the final descent because of the navigation switch and stayed attached to the lander.

Embry-Riddle's Troy Henderson said his team will try to release EagleCam in the coming days, so it can photograph the lander from roughly 26 feet (8 meters) away.

"Getting that final picture of the lander on the surface is still an incredibly important task for us,” Henderson told The Associated Press.

Intuitive Machines anticipates just another week of operations on the moon for the solar-powered lander — nine or 10 days at most — before lunar nightfall hits.

The company was the second business to aim for the moon under NASA's commercial lunar services program. Last month, Pittsburgh's Astrobotic Technology gave it a shot, but a fuel leak on the lander cut the mission short and the craft ended up crashing back to Earth.

Until Thursday, the U.S. had not landed on the moon since Apollo 17's Gene Cernan and Harrison Schmitt closed out NASA's famed moon-landing program in December 1972. NASA's new effort to return astronauts to the moon is named Artemis after Apollo's mythological twin sister. The first Artemis crew landing is planned for 2026 at the earliest.

3 female Houston innovators to know this week

who's who

Editor's note: Welcome to another Monday edition of Innovators to Know. Today I'm introducing you to three Houstonians to read up about — three individuals behind recent innovation and startup news stories in Houston as reported by InnovationMap. Learn more about them and their recent news below by clicking on each article.

Emma Konet, co-founder and CTO of Tierra Climate

Emma Konet, co-founder and CTO of Tierra Climate, joins the Houston Innovators Podcast. Photo via LinkedIn

If the energy transition is going to be successful, the energy storage space needs to be equipped to support both the increased volume of energy needed and new energies. And Emma Konet and her software company, Tierra Climate, are targeting one part of the equation: the market.

"To me, it's very clear that we need to build a lot of energy storage in order to transition the grid," Konet says on the Houston Innovators Podcast. "The problems that I saw were really on the market side of things." Read more.

Cindy Taff, CEO of Sage Geosystems

Houston-based Sage Geosystems announced the first close of $17 million round led by Chesapeake Energy Corp. Photo courtesy of Sage

A Houston geothermal startup has announced the close of its series A round of funding.

Houston-based Sage Geosystems announced the first close of $17 million round led by Chesapeake Energy Corp. The proceeds aim to fund its first commercial geopressured geothermal system facility, which will be built in Texas in Q4 of 2024. According to the company, the facility will be the first of its kind.

“The first close of our Series A funding and our commercial facility are significant milestones in our mission to make geopressured geothermal system technologies a reality,” Cindy Taff, CEO of Sage Geosystems, says. Read more.

Clemmie Martin, chief of staff at The Cannon

With seven locations across the Houston area, The Cannon's digital technology allows its members a streamlined connection. Photo courtesy of The Cannon

After collaborating over the years, The Cannon has acquired a Houston startup's digital platform technology to become a "physical-digital hybrid" community.

Village Insights, a Houston startup, worked with The Cannon to create and launch its digital community platform Cannon Connect. Now, The Cannon has officially acquired the business. The terms of the deal were not disclosed.

“The integration of a world-class onsite member experience and Cannon Connect’s superior virtual resource network creates a seamless, streamlined environment for member organizations,” Clemmie Martin, The Cannon’s newly appointed chief of staff, says in the release. “Cannon Connect and this acquisition have paved new pathways to access and success for all.” Read more.