The Rice Alliance and BioHouston acknowledged innovations from a dozen promising health tech companies. Photo via Rice University

For the 13th year, the Texas Life Science Forum hosted by BioHouston and the Rice Alliance for Technology and Entrepreneurship celebrated innovative companies from around the world that are creating new treatments and solutions to today's biggest health care challenges.

This week, over 40 companies presenting their innovations across cancer, cardiovascular disease, biotechnology, and more. Nearly 700 venture capitalists, corporate innovation groups, angel networks, industry leaders, academics, service providers, and others attended the event on November 7 at Rice's BioScience Research Collaborative in the Texas Medical Center.

Just like in previous years, the event ended with the announcement of the 10 companies that were deemed "most promising" based on their pitches and technologies. Of the 10 companies named, six are headquartered in Houston and an additional two startups on the list have a presence here.

The 2024 most-promising life science companies are:

Houston-based clinical-stage cell therapy company March Biosciencesis developing a pipeline of innovative therapies, beginning with targeting relapsed an refractory T cell lymphoma.

ImmunoGenesis, headquartered in Houston, is a clinical-stage biotechnology company developing a potent PD-1 pathway targeting agent specifically engineered for immuneexcluded tumors, which account for over 50 percent of all cancers

Taurus Vascular, based in Houston, is revolutionizing endovascular aneurysm repair by addressing the critical issues of residual aneurysm pressurization and endoleaks with its catheter-deployable aortocaval shunt.

Headquartered in Australia with a Houston presence, Foxo Technologyoffers HIPAA-compliant, communication software for anyone in health care.

Another Houston company,Voythoshas built an AI platform to better predict and diagnose cardiovascular disease earlier to enhance quality and cost of care.

Dutch company Loop Robot, which has a presence in Houston, automates disinfection with its intelligent robot to make medical-grade disinfection faster, safer, and digitally auditable.

London-based Case45develops and commercializes pan-cancer prognostic tests using unique integration of tumor evolution and AI and is beginning with breast and lung cancers.

OmniNano Pharmaceuticals, headquartered in Houston, has developed a nano-drug delivery platform technology enables simultaneous co-delivery of multiple therapeutic agents designed specifically to treat solid tumors.

Houston-based clinical-stage biopharmaceutical company Mongoose Bio is pioneering first-in-class T cell receptor T cell (TCR-T) therapies for cancer treatment.

Rua Diagnosticsfrom New York is redefining point-of-care diagnostics with advanced micro gas chromatography technology for breath analysis that's capable of detecting a wide range of prevalent and deadly diseases.

In addition to this list, the event named two additional awards. United Kingdom's Cytecom, which provides quick and accurate diagnosis and treatment of blood infections stems, was selected by the crowd as the People's Choice award winner.

Last, but not least, BioHouston's Ann Tanabe awarded this year's Michael E. Debakey Award to Houston-based Autoimmunity BioSolutions, seed-stage biotech developing a next-generation, immuno-corrective therapy for treatment of autoimmune diseases to restore normal immune function.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas universities develop innovative open-source platform for cell analysis

picture this

What do labs do when faced with large amounts of imaging data? Powerful cloud computing systems have long been the answer to that question, but a new riposte comes from SPACe.

That’s the name of a new open-source image analysis platform designed by researchers at Baylor College of Medicine, Texas A&M University and the University of Houston.

SPACe, or Swift Phenotypic Analysis of Cells, was created to be used on standard computers that even small labs can access, meaning cellular analysis using images produced through cell painting has a lower barrier to entry than ever before.

“The pharmaceutical industry has been accustomed to simplifying complex data into single metrics. This platform allows us to shift away from that approach and instead capture the full diversity of cellular responses, providing richer, more informative data that can reveal new avenues for drug development,” Michael Mancini, professor of molecular and cellular biology and director of the Gulf Coast Consortium Center for Advanced Microscopy and Image Informatics co-located at Baylor College of Medicine and TAMU Institute for Bioscience and Technology.

SPACe is not only accessible because of its less substantial computational needs. Because the platform is open-source, it’s available to anyone who needs it. And it can be used by academic and pharmaceutical researchers alike.

“The platform allows for the identification of non-toxic effects of drugs, such as alterations in cell shape or effects on specific organelles, which are often overlooked by traditional assays that focus largely on cell viability,” says Fabio Stossi, currently a senior scientist with St. Jude Children’s Research Hospital, the lead author who was at Baylor during the development of SPACe.

The platform is a better means than ever of analyzing thousands of individual cells through automated imaging platforms, thereby better capturing the variability of biological processes. Through that, SPACe allows scientists an enhanced understanding of the interactions between drugs and cells, and does it on standard computers, translating to scientists performing large-scale drug screenings with greater ease.

"This tool could be a game-changer in how we understand cellular biology and discover new drugs. By capturing the full complexity of cellular responses, we are opening new doors for drug discovery that go beyond toxicity,” says Stossi.

And the fact that it’s open-source allows scientists to access SPACe for free right now. Researchers interested in using the platform can access it through Github at github.com/dlabate/SPACe. This early version could already make waves in research, but the team also plans to continually improve their product with the help of collaborations with other institutions.

The Ion names new coworking partner for Houston innovation hub

Where to Work

Rice University subsidiary Rice Real Estate Co. has tapped coworking company Industrious as the new operator of the Ion’s 86,000-square-foot coworking space in Midtown. Industrious replaces WeWork-owned Common Desk in that role.

The Ion, owned by Rice Real Estate and located at 4201 Main St., is a 266,000-square-foot office building and innovation hub in the 16-acre Ion District.

Features of the coworking space include private suites and offices, dedicated desks, phone booths and conference rooms. In 2022, Common Desk said it was expanding the space by 28,000 square feet, bringing it to the current size.

“(Industrious’) unparalleled expertise in delivering quality, hospitality-driven workspaces complements our vision of creating a world-class ecosystem where entrepreneurs, corporations, and academia converge to drive innovation forward,” Ken Jett, president of Rice Real Estate, said in a statement.

Natalie Levine, senior manager of real estate at Industrious, says her company will work with Rice Real Estate “to continue to position the Ion as an invaluable contributor to the growth of Houston’s innovation community.”

Dallas-based commercial real estate services company CBRE said Jan. 14 that it had agreed to acquire Industrious in a deal valued at $400 million.

The Ion is Industrious’ second location in Houston. The company’s other local coworking space is at 1301 McKinney St.

Office tenants at the Ion include Occidental Petroleum, Fathom Fund, Activate, Carbon Clean, Microsoft and Chevron Technology Ventures.