WeWork's newest Houston-area location is headed to The Woodlands. Courtesy of WeWork

In 2018, WeWork more than doubled its presence in Houston in terms of desks available. The company went from one location in the Galleria area with 1,100 desks to adding a second location in downtown with 1,500 desks. In 2019, WeWork is expected to again double the number of coworking desks the company will have by the end of the year — most new desk space will come from WeWork's new location in The Woodlands.

"In 2018, WeWork grew its footprint in a very big way in Houston. Now, in 2019, we're growing even more, but in a way that's as much about desks as it is impact," says Roniel Bencosme, WeWork Houston's community director, in a news release. "In this next year, WeWork will build a constellation of opportunity through new spaces spread across Houston, and opening in the Woodlands is key to that effort."

WeWork will have 1,000 desks at the new northwest location (1725 Hughes Landing) across two floors and 52,000 square feet of space, according to the release. WeWork Galleria will add 775 desks in the fourth quarter of 2019, and 1,000 more desks will be added by end of the year pending new leases, the release says. Regionally, WeWork has a presence in five cities in Texas — Dallas, Fort Worth, Houston, Austin, and Plano — but will launch in its sixth Texas city, San Antonio, in early 2020.

In 2019, WeWork will also be growing its social impact programs on a national level in addition to its footprint. Recently, WeWork formed a partnership with the Female Founders Alliance, the Tent Partnership for Refugees, to hire 1,500 refugees at WeWork over the next five years. The company's veterans hiring initiative will also be hiring 1,500 veterans over the next five years.

Houstonians can also expect to see new WeWork Labs, WeWork's accelerator concept, around town, as well as the Veterans in Residence third cohort. WeWork's Flatiron School, which is in its downtown Houston location, will see new cohorts and boasts of a 98 percent job rate placement rate. The school alsy awarded $200,000 in scholarship dollars last year.

"Impact for WeWork is about enabling opportunity. We unlock access to thriving workspaces for companies of all sizes that would otherwise be out of reach," Bencosme says in the release. "We help cities like Houston attract top companies and reduce friction for them to put down roots. We're creating synergies and connectivity across the metro region at a level and scale that's never been done before. That's impact.

WeWork recently released its Global Impact Report for 2019, and the research tracked specifics about its Houston membership. Here were some key findings of the study locally:

  • The majority of Houston WeWork members (83 percent) are in the innovation economy, compared to 12% in the region as a whole.
  • When it comes to sustainable commuting, 42 percent of WeWork members walk, bike, or use public transit to go to work.
  • The Houston WeWork economy contributes over $1 billion to the city's GDP — either directly ($480 million) or indirectly ($530 million)
  • WeWork's small and medium-sized member companies in Houston have an average job growth rate of 32 percent (compared to 1 percent for all companies in Houston).
  • In Houston, 58 percent of WeWork members say the organization has helped their company accelerate its growth.
  • While 44 percent of senior roles at U.S. WeWork member companies are held by women, Houston's percentage of female-led companies at WeWork locally is slightly lower at 36 percent.
  • Of WeWork members that are entrepreneurs in Houston, 26 percent are first-time entrepreneurs, and 1 in 20 of the city's first-time entrepreneurs are WeWork members.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Greentown Labs names Lawson Gow as its new Houston leader

head of hou

Greentown Labs has named Lawson Gow as its Head of Houston.

Gow is the founder of The Cannon, a coworking space with seven locations in the Houston area, with additional partner spaces. He also recently served as managing partner at Houston-based investment and advisory firm Helium Capital. Gow is the son of David Gow, founder of Energy Capital's parent company, Gow Media.

According to Greentown, Gow will "enhance the founder experience, cultivate strategic partnerships, and accelerate climatetech solutions" in his new role.

“I couldn’t be more excited to join Greentown at this critical moment for the energy transition,” Gow said in a news release. “Greentown has a fantastic track record of supporting entrepreneurs in Houston, Boston, and beyond, and I am eager to keep advancing our mission in the energy transition capital of the world.”

Gow has also held analyst, strategy and advising roles since graduating from Rice University.

“We are thrilled to welcome Lawson to our leadership team,” Georgina Campbell Flatter, CEO of Greentown Labs, added in the release. “Lawson has spent his career building community and championing entrepreneurs, and we look forward to him deepening Greentown’s support of climate and energy startups as our Head of Houston.”

Gow is the latest addition to a series of new hires at Greentown Labs following a leadership shakeup.

Flatter was named as the organization's new CEO in February, replacing Kevin Dutt, Greentown’s interim CEO, who replaced Kevin Knobloch after he announced that he would step down in July 2024 after less than a year in the role.

Greentown also named Naheed Malik its new CFO in January.

Timmeko Moore Love was named the first Houston general manager and senior vice president of Greentown Labs. According to LinkedIn, she left the role in January.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Rice team keeps CO2-to-fuel devices running 50 times longer in new study

Bubbling Up

In a new study published in the journal Science, a team of Rice University researchers shared findings on how acid bubbles can improve the stability of electrochemical devices that convert carbon dioxide into useful fuels and chemicals.

The team led by Rice associate professor Hoatian Wang addressed an issue in the performance and stability of CO2 reduction systems. The gas flow channels in the systems often clog due to salt buildup, reducing efficiency and causing the devices to fail prematurely after about 80 hours of operation.

“Salt precipitation blocks CO2 transport and floods the gas diffusion electrode, which leads to performance failure,” Wang said in a news release. “This typically happens within a few hundred hours, which is far from commercial viability.”

By using an acid-humidified CO2 technique, the team was able to extend the operational life of a CO2 reduction system more than 50-fold, demonstrating more than 4,500 hours of stable operation in a scaled-up reactor.

The Rice team made a simple swap with a significant impact. Instead of using water to humidify the CO2 gas input into the reactor, the team bubbled the gas through an acid solution such as hydrochloric, formic or acetic acid. This process made more soluble salt formations that did not crystallize or block the channels.

The process has major implications for an emerging green technology known as electrochemical CO2 reduction, or CO2RR, that transforms climate-warming CO2 into products like carbon monoxide, ethylene, or alcohols. The products can be further refined into fuels or feedstocks.

“Using the traditional method of water-humidified CO2 could lead to salt formation in the cathode gas flow channels,” Shaoyun Hao, postdoctoral research associate in chemical and biomolecular engineering at Rice and co-first author, explained in the news release. “We hypothesized — and confirmed — that acid vapor could dissolve the salt and convert the low solubility KHCO3 into salt with higher solubility, thus shifting the solubility balance just enough to avoid clogging without affecting catalyst performance.”

The Rice team believes the work can lead to more scalable CO2 electrolyzers, which is vital if the technology is to be deployed at industrial scales as part of carbon capture and utilization strategies. Since the approach itself is relatively simple, it could lead to a more cost-effective and efficient solution. It also worked well with multiple catalyst types, including zinc oxide, copper oxide and bismuth oxide, which are allo used to target different CO2RR products.

“Our method addresses a long-standing obstacle with a low-cost, easily implementable solution,” Ahmad Elgazzar, co-first author and graduate student in chemical and biomolecular engineering at Rice, added in the release. “It’s a step toward making carbon utilization technologies more commercially viable and more sustainable.”

A team led by Wang and in collaboration with researchers from the University of Houston also recently shared findings on salt precipitation buildup and CO2RR in a recent edition of the journal Nature Energy.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Houston foundation grants $27M to support Texas chemistry research

fresh funding

Houston-based The Welch Foundation has doled out $27 million in its latest round of grants for chemical research, equipment and postdoctoral fellowships.

According to a June announcement, $25.5 million was allocated for the foundation's longstanding research grants, which provide $100,000 per year in funding for three years to full-time, regular tenure or tenure-track faculty members in Texas. The foundation made 85 grants to faculty at 16 Texas institutions for 2025, including:

  • Michael I. Jacobs, assistant professor in the chemistry and biochemistry department at Texas State University, who is investigating the structure and thermodynamics of intrinsically disordered proteins, which could "reveal clues about how life began," according to the foundation.
  • Kendra K. Frederick, assistant professor in the biophysics department at The University of Texas Southwestern Medical Center, who is studying a protein linked to Parkinson’s disease.
  • Jennifer S. Brodbelt, professor in chemistry at The University of Texas at Austin, who is testing a theory called full replica symmetry breaking (fullRSB) on glass-like materials, which has implications for complex systems in physics, chemistry and biology.

Additional funding will be allocated to the Welch Postdoctoral Fellows of the Life Sciences Research Foundation. The program provides three-year fellowships to recent PhD graduates to support clinical research careers in Texas. Two fellows from Rice University and Baylor University will receive $100,000 annually for three years.

The Welch Foundation also issued $975,000 through its equipment grant program to 13 institutions to help them develop "richer laboratory experience(s)." The universities matched funds of $352,346.

Since 1954, the Welch Foundation has contributed over $1.1 billion for Texas-nurtured advancements in chemistry through research grants, endowed chairs and other chemistry-related ventures. Last year, the foundation granted more than $40.5 million in academic research grants, equipment grants and fellowships.

“Through funding basic chemical research, we are actively investing in the future of humankind,” Adam Kuspa, president of The Welch Foundation, said the news release. “We are proud to support so many talented researchers across Texas and continue to be inspired by the important work they complete every day.”