Richard Willson (center) and his team are working to develop a mix-and-read antibody measurement system that uses fluorescent materials to determine the amount of antibody present in a sample. Photo via UH.edu

An engineering project at the University of Houston has been selected to join a $10 million effort to bring biopharmaceutical manufacturing into the future. The National Institute for Innovation in Manufacturing Biopharmaceuticals (NIIMBL) chose the lab of Richard Willson, Huffington-Woestemeyer Professor of chemical and biomolecular engineering at UH, as one of eight development projects that it will fund.

Willson and his team are working to develop a mix-and-read antibody measurement system that uses fluorescent materials to determine the amount of antibody present in a sample. The funding for this project is $200,000. This is the first grant UH has received from NIIMBL.

“In the course of the manufacturing processes, it's important to know the concentration of antibody in your sample and this measurement needs to be made many times in a typical manufacturing process,” said Willson in a press release. In the realm of fluorescents, he is also working to pioneer the use of glow sticks to detect biothreats for the U.S. Navy. His discoveries include a fluorescent material that emits one color of light when excited with another color of light.

Antibodies are what immune cells produce in response to alien substances such as bacteria and viruses. Lab-made antibodies, called monoclonal antibodies, have been in use since the 1980s. Antibody treatments now account for some of the world’s top-selling drugs.

“The nice thing about this reagent is that it becomes more fluorescent in the presence of antibodies, and you can determine the amount of antibody present in a sample by using it,” said Willson. “Along with our industrial partners Genentech, Agilent and Bristol Myers Squibb, we think that this might be a useful tool for people who do everything from growing the cells that make the antibodies, to determining concentrations of antibody before purifying them.”

Willson’s team also includes Katerina Kourentzi, research associate professor of chemical and biomolecular engineering at UH; Yan Chen, Agilent; Midori Greenwood-Goodwin, Genentech/Roche; and Mathura Raman, Bristol-Myers Squibb.

“One really distinguishing feature of this project is the tight coupling to industry,” said Kourentzi. “We got a lot of guidance from our industrial partners who volunteer to work with us through NIIMBL.” And through that, the technology could make it to the market in record time.

At-home COVID-19 testing is about to get lit. Photo via Getty Images

UH researcher lights up at-home COVID-19 testing with glow-in-the-dark materials

get lit

A Houston-based research team is tapping glow-in-the-dark materials to upgrade at-home rapid COVID-19 testing.

Researchers at the University of Houston have been rethinking the lateral flow assay (LFA) test used for at-home COVID-19 diagnostics. The traditional method indicates the sample's results with colored lines.

“We are making those lines glow-in-the-dark so that they are more detectable, so the sensitivity of the test is better,” says Richard Willson, a professor at the University of Houston, in a UH news release. He previously created a smartphone-based diagnostics app.

Willson's inspiration came from a familiar and nostalgic method — the glow-in-the-dark stars in a child's bedroom. In Willson's case, it was his daughter's bedroom, and within a few days his team of students and postdocs was designing a test featuring glowing nanoparticles made of phosphors.

The team evolved into a spin-off company called Clip Health, originally founded as Luminostics by two of the researchers. The operation is again evolving with new glowing applications.

“In this new development, there are two tricks. First, we use enzymes, proteins that catalyze reactions, to drive reactions that emit light, like a firefly. Second, we attached those light-emitting enzymes onto harmless virus particles, along with antibodies that bind to COVID proteins,” says Willson in the Royal Society of Chemistry’s journal Analyst.

The test now also can be read with a smartphone app. The group is also entertaining additional tests for other diseases.

“This technology can be used for detecting all kinds of other things, including flu and HIV, but also Ebola and biodefense agents, and maybe toxins and environmental contaminants and pesticides in food,” says Willson.

In addition to Willson, the original technology was explained in a paper with co-authors:

  • Katerina Kourentzi, University of Houston research associate professor of chemical and biomolecular engineering
  • Jacinta Conrad, Frank M. Tiller Associate Professor of Chemical and Biomolecular Engineering,
  • UH researchers Maede Chabi, Binh Vu, Kristen Brosamer, Maxwell Smith, and Dimple Chavan

Researcher Richard Willson says he was inspired by the glow-in-the-dark scars on his daughter's bedroom ceiling. Photo via UH.edu

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Axiom Space wins NASA contract for fifth private mission to ISS

ready for takeoff

Axiom Space, a Houston-based space infrastructure company that’s developing the first commercial space station, has forged a deal with NASA to carry out the fifth civilian-staffed mission to the International Space Station.

Axiom Mission 5 is scheduled to launch in January 2027, at the earliest, from NASA’s Kennedy Space Center in Florida. The crew of non-government astronauts is expected to spend up to 14 days docked at the International Space Station (ISS). Various science and research activities will take place during the mission.

The crew for the upcoming mission hasn’t been announced. Previous Axiom missions were commanded by retired NASA astronauts Michael López-Alegría, the company’s chief astronaut, and Peggy Whitson, the company’s vice president of human spaceflight.

“All four previous [Axiom] missions have expanded the global community of space explorers, diversifying scientific investigations in microgravity, and providing significant insight that is benefiting the development of our next-generation space station, Axiom Station,” Jonathan Cirtain, president and CEO of Axiom, said in a news release.

As part of Axiom’s new contract with NASA, Voyager Technologies will provide payload services for Axiom’s fifth mission. Voyager, a defense, national security, and space technology company, recently announced a four-year, $24.5 million contract with NASA’s Johnson Space Center in Houston to provide mission management services for the ISS.

Houston edtech company closes oversubscribed $3M seed round

fresh funding

Houston-based edtech company TrueLeap Inc. closed an oversubscribed seed round last month.

The $3.3 million round was led by Joe Swinbank Family Limited Partnership, a venture capital firm based in Houston. Gamper Ventures, another Houston firm, also participated with additional strategic partners.

TrueLeap reports that the funding will support the large-scale rollout of its "edge AI, integrated learning systems and last-mile broadband across underserved communities."

“The last mile is where most digital transformation efforts break down,” Sandip Bordoloi, CEO and president of TrueLeap, said in a news release. “TrueLeap was built to operate where bandwidth is limited, power is unreliable, and institutions need real systems—not pilots. This round allows us to scale infrastructure that actually works on the ground.”

True Leap works to address the digital divide in education through its AI-powered education, workforce systems and digital services that are designed for underserved and low-connectivity communities.

The company has created infrastructure in Africa, India and rural America. Just this week, it announced an agreement with the City of Kinshasa in the Democratic Republic of Congo to deploy a digital twin platform for its public education system that will allow provincial leaders to manage enrollment, staffing, infrastructure and performance with live data.

“What sets TrueLeap apart is their infrastructure mindset,” Joe Swinbank, General Partner at Joe Swinbank Family Limited Partnership, added in the news release. “They are building the physical and digital rails that allow entire ecosystems to function. The convergence of edge compute, connectivity, and services makes this a compelling global infrastructure opportunity.”

TrueLeap was founded by Bordoloi and Sunny Zhang and developed out of Born Global Ventures, a Houston venture studio focused on advancing immigrant-founded technology. It closed an oversubscribed pre-seed in 2024.

Texas space co. takes giant step toward lunar excavator deployment

Out of this world

Lunar exploration and development are currently hampered by the fact that the moon is largely devoid of necessary infrastructure, like spaceports. Such amenities need to be constructed remotely by autonomous vehicles, and making effective devices that can survive the harsh lunar surface long enough to complete construction projects is daunting.

Enter San Antonio-based Astroport Space Technologies. Founded in San Antonio in 2020, the company has become a major part of building plans beyond Earth, via its prototype excavator, and in early February, it completed an important field test of its new lunar excavator.

The new excavator is designed to function with California-based Astrolab's Flexible Logistics and Exploration (FLEX) rover, a highly modular vehicle that will perform a variety of functions on the surface of the moon.

In a recent demo, the Astroport prototype excavator successfully integrated with FLEX and proceeded to dig in a simulated lunar surface. The excavator collected an average of 207 lbs (94kg) of regolith (lunar surface dust) in just 3.5 minutes. It will need that speed to move the estimated 3,723 tons (3,378 tonnes) of regolith needed for a lunar spaceport.

After the successful test, both Astroport and Astrolab expressed confidence that the excavator was ready for deployment. "Leading with this successful excavator demo proves that our technology is no longer theoretical—it is operational," said Sam Ximenes, CEO of Astroport.

"This is the first of many implements in development that will turn Astrolab's FLEX rover into the 'Swiss Army Knife' of lunar construction. To meet the infrastructure needs of the emerging lunar economy, we must build the 'Port' before the 'Ship' arrives. By leveraging the FLEX platform, we are providing the Space Force, NASA, and commercial partners with a 'Shovel-Ready' construction capability to secure the lunar high ground."

"We are excited to provide the mobility backbone for Astroport's groundbreaking construction technology," said Jaret Matthews, CEO of Astrolab, in a release. "Astrolab is dedicated to establishing a viable lunar ecosystem. By combining our FLEX rover's versatility with Astroport's civil engineering expertise, we are delivering the essential capabilities required for a sustainable lunar economy."

---

This article originally appeared on CultureMap.com.