Richard Willson (center) and his team are working to develop a mix-and-read antibody measurement system that uses fluorescent materials to determine the amount of antibody present in a sample. Photo via UH.edu

An engineering project at the University of Houston has been selected to join a $10 million effort to bring biopharmaceutical manufacturing into the future. The National Institute for Innovation in Manufacturing Biopharmaceuticals (NIIMBL) chose the lab of Richard Willson, Huffington-Woestemeyer Professor of chemical and biomolecular engineering at UH, as one of eight development projects that it will fund.

Willson and his team are working to develop a mix-and-read antibody measurement system that uses fluorescent materials to determine the amount of antibody present in a sample. The funding for this project is $200,000. This is the first grant UH has received from NIIMBL.

“In the course of the manufacturing processes, it's important to know the concentration of antibody in your sample and this measurement needs to be made many times in a typical manufacturing process,” said Willson in a press release. In the realm of fluorescents, he is also working to pioneer the use of glow sticks to detect biothreats for the U.S. Navy. His discoveries include a fluorescent material that emits one color of light when excited with another color of light.

Antibodies are what immune cells produce in response to alien substances such as bacteria and viruses. Lab-made antibodies, called monoclonal antibodies, have been in use since the 1980s. Antibody treatments now account for some of the world’s top-selling drugs.

“The nice thing about this reagent is that it becomes more fluorescent in the presence of antibodies, and you can determine the amount of antibody present in a sample by using it,” said Willson. “Along with our industrial partners Genentech, Agilent and Bristol Myers Squibb, we think that this might be a useful tool for people who do everything from growing the cells that make the antibodies, to determining concentrations of antibody before purifying them.”

Willson’s team also includes Katerina Kourentzi, research associate professor of chemical and biomolecular engineering at UH; Yan Chen, Agilent; Midori Greenwood-Goodwin, Genentech/Roche; and Mathura Raman, Bristol-Myers Squibb.

“One really distinguishing feature of this project is the tight coupling to industry,” said Kourentzi. “We got a lot of guidance from our industrial partners who volunteer to work with us through NIIMBL.” And through that, the technology could make it to the market in record time.

At-home COVID-19 testing is about to get lit. Photo via Getty Images

UH researcher lights up at-home COVID-19 testing with glow-in-the-dark materials

get lit

A Houston-based research team is tapping glow-in-the-dark materials to upgrade at-home rapid COVID-19 testing.

Researchers at the University of Houston have been rethinking the lateral flow assay (LFA) test used for at-home COVID-19 diagnostics. The traditional method indicates the sample's results with colored lines.

“We are making those lines glow-in-the-dark so that they are more detectable, so the sensitivity of the test is better,” says Richard Willson, a professor at the University of Houston, in a UH news release. He previously created a smartphone-based diagnostics app.

Willson's inspiration came from a familiar and nostalgic method — the glow-in-the-dark stars in a child's bedroom. In Willson's case, it was his daughter's bedroom, and within a few days his team of students and postdocs was designing a test featuring glowing nanoparticles made of phosphors.

The team evolved into a spin-off company called Clip Health, originally founded as Luminostics by two of the researchers. The operation is again evolving with new glowing applications.

“In this new development, there are two tricks. First, we use enzymes, proteins that catalyze reactions, to drive reactions that emit light, like a firefly. Second, we attached those light-emitting enzymes onto harmless virus particles, along with antibodies that bind to COVID proteins,” says Willson in the Royal Society of Chemistry’s journal Analyst.

The test now also can be read with a smartphone app. The group is also entertaining additional tests for other diseases.

“This technology can be used for detecting all kinds of other things, including flu and HIV, but also Ebola and biodefense agents, and maybe toxins and environmental contaminants and pesticides in food,” says Willson.

In addition to Willson, the original technology was explained in a paper with co-authors:

  • Katerina Kourentzi, University of Houston research associate professor of chemical and biomolecular engineering
  • Jacinta Conrad, Frank M. Tiller Associate Professor of Chemical and Biomolecular Engineering,
  • UH researchers Maede Chabi, Binh Vu, Kristen Brosamer, Maxwell Smith, and Dimple Chavan

Researcher Richard Willson says he was inspired by the glow-in-the-dark scars on his daughter's bedroom ceiling. Photo via UH.edu

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Johnson Space Center and UT partner to expand research, workforce development

onward and upward

NASA’s Johnson Space Center in Houston has forged a partnership with the University of Texas System to expand collaboration on research, workforce development and education that supports space exploration and national security.

“It’s an exciting time for the UT System and NASA to come together in new ways because Texas is at the epicenter of America’s space future. It’s an area where America is dominant, and we are committed as a university system to maintaining and growing that dominance,” Dr. John Zerwas, chancellor of the UT System, said in a news release.

Vanessa Wyche, director of Johnson Space Center, added that the partnership with the UT System “will enable us to meet our nation’s exploration goals and advance the future of space exploration.”

The news release noted that UT Health Houston and the UT Medical Branch in Galveston already collaborate with NASA. The UT Medical Branch’s aerospace medicine residency program and UT Health Houston’s space medicine program train NASA astronauts.

“We’re living through a unique moment where aerospace innovation, national security, economic transformation, and scientific discovery are converging like never before in Texas," Zerwas said. “UT institutions are uniquely positioned to partner with NASA in building a stronger and safer Texas.”

Zerwas became chancellor of the UT System in 2025. He joined the system in 2019 as executive vice chancellor for health affairs. Zerwas represented northwestern Ford Bend County in the Texas House from 2007 to 2019.

In 1996, he co-founded a Houston-area medical practice that became part of US Anesthesia Partners in 2012. He remained active in the practice until joining the UT System. Zerwas was chief medical officer of the Memorial Hermann Hospital System from 2003 to 2008 and was its chief physician integration officer until 2009.

Zerwas, a 1973 graduate of the Houston area’s Bellaire High School, is an alumnus of the University of Houston and Baylor College of Medicine.

Texas booms as No. 3 best state to start a business right now

Innovation Starts Here

High employment growth and advantageous entrepreneurship rates have led Texas into a triumphant No. 3 spot in WalletHub's ranking of "Best and Worst States to Start a Business" for 2026.

Texas bounced back into the No. 3 spot nationally for the first time since 2023. After dropping into 8th place in 2024, the state hustled into No. 4 last year.

Ever year, WalletHub compares all 50 states based on their business environment, costs, and access to financial resources to determine the best places for starting a business. The study analyzes 25 relevant metrics to determine the rankings, such as labor costs, office space affordability, financial accessibility, the number of startups per capita, and more.

When about half of all new businesses don't last more than five years, finding the right environment for a startup is vital for long-term success, the report says.

Here's how Texas ranked across the three main categories in the study:

  • No. 1 – Business environment
  • No. 11 – Access to resources
  • No. 34 – Business costs

The state boasts the 10th highest entrepreneurship rates nationwide, and it has the 11th-highest share of fast-growing firms. WalletHub also noted that more than half (53 percent) of all Texas businesses are located in "strong clusters," which suggests they are more likely to be successful long-term.

"Clusters are interconnected businesses that specialize in the same field, and 'strong clusters' are ones that are in the top 25 percent of all regions for their particular specialization," the report said. "If businesses fit into one of these clusters, they will have an easier time getting the materials they need, and can tap into an existing customer base. To some degree, it might mean more competition, though."

Texas business owners should also keep their eye on Houston, which was recently ranked the 7th best U.S. city for starting a new business, and it was dubbed one of the top-10 tech hubs in North America. Workers in Texas are the "third-most engaged" in the country, the study added, a promising attribute for employers searching for the right place to begin their next business venture.

"Business owners in Texas benefit from favorable conditions, as the state has the third-highest growth in working-age population and the third-highest employment growth in the country, too," the report said.

The top 10 best states for starting a business in 2026 are:

  • No. 1 – Florida
  • No. 2 – Utah
  • No. 3 – Texas
  • No. 4 – Oklahoma
  • No. 5 – Idaho
  • No. 6 – Mississippi
  • No. 7 – Georgia
  • No. 8 – Indiana
  • No. 9 – Nevada
  • No. 10 – California
---

This article originally appeared on CultureMap.com.