OpenStax, founded out of Rice University, has continued its growth, adding new partners and textbooks. Photo via openstax.org

If everyone that attended a college or university were polled, they’d all likely agree that one of the worst parts of the experience was the rising costs of textbooks.

In an effort to combat the hefty price tag of assigned texts, OpenStax, a nonprofit education startup out of Rice University, which is on a mission to increase educational access for all, seeks to democratize high-quality education by offering free, peer-reviewed, openly licensed textbooks for students and knowledge seekers across the globe.

This month, OpenStax will add to its 57 open education resources, or OER, titles with a full version of John McMurry's popular pre-med textbook, Organic Chemistry, under an open license to honor his late son, Peter, who passed away in 2019 after losing his battle with cystic fibrosis.

“The author, John McMurry, granted us the ability to publish the 10th edition openly,” Anthony Palmiotto, director of higher education at OpenStax, tells InnovationMap. “So, the most widely used organic chemistry textbook went from being one of the most expensive undergraduate texts on the market (almost $100), to a free and open text, making this a watershed moment for OER.”

This school year, OpenStax is adding 16 academic institutions onto its platform, including Georgia State University, Southwest Texas Junior College, Texas A&M University-Commerce, University of San Diego, and more. It's the largest batch of new schools OpenStax has onboarded in a year, Palmiotto says in a news release.

Founded to increase access

Richard Baraniuk, a professor of Electrical and Computer Engineering at Rice University, founded OpenStax. Photo via rice.edu

OpenStax founder and director Richard Baraniuk, a professor of Electrical and Computer Engineering at Rice University, started the OER publisher in 1999 to remove financial barriers and make educational resources more widely available. Much like increasing access to McMurry’s Organic Chemistry, the goal is to continue to support both learners and educators by providing easily accessible and well-developed materials.

“Our mission is to support all learners in their educational pursuits by providing access to high-quality education,” Palmiotto says. “Richard Baraniuk founded it initially as a way for faculty and others to get their material and their knowledge in the form of textbooks and other learning materials to students.

“And then born out of that, we started this robust textbook development and course material development program where we put out the highest-quality materials we can in a way that fits the way courses are taught. Meaning convenience and scope and sequence and other needs that instructors must use textbooks. So really the access was really the start of it, increasing that and lowering barriers to education, and then a lot flowed from that.”

OpenStax’s library of OER titles, which are published under a Creative Commons Attribution license, are free and easily accessible on the go and usable on any device in multiple formats, including digital and PDF.

Funded by philanthropic supporters, OpenStax normally works to openly access five or six books per year, working mostly on introductory courses. Most recently, the Texas Higher Education Coordinating Board funded the publisher to do a series of nursing books, eight in total.

“Before the nursing books, we were doing business books,” Palmiotto says. “Murry’s book builds out our science offerings, so we're thinking about the different areas that students take that can be barriers for them to move up in education and succeed. From there, we’ll continue to think about how a free textbook can help students through that process.”

Tapping into tech

Currently, OpenStax has over 7.5 million users in the formal education space, primarily in higher education introductory courses, as well as grades K–12. Photo via openstax.org

In addition to nursing, OpenStax is working towards releasing books in data science and computer science, including programming, workplace software and, eventually, artificial intelligence.

“AI is a big deal to us,” says Palmiotto. “We're thinking about it a lot, and in the books themselves, we're incorporating as best we can how AI plays into Data Science, Computer Science and Python Programming those. We’re thinking about how AI could be used and will impact programming, for example. But the AI landscape is changing as we go, and that's another reason we don't just put out the books, we maintain them.

“So, we can continually update them. Once we publish, six months later, we can publish updates or additions to reflect what's happening in courses or in professions or in the workforce to reflect how AI is being used as new software is released and so on.”

As OpenStax continues to build on its OER title database, they are using multiple methods of outreach to reach as many people as possible. Currently, they have over 7.5 million users in the formal education space, primarily in higher education introductory courses, as well as grades K–12.

“Over 140 countries are using our material,” says Palmiotto. “We're not as easily able to track how many students have used our material in all those other countries. But that's not the point, we want to put it out there. We know it's being used. We want to help as much as possible. But it is being used in all those countries and in different ways. Some people are translating it. Some people are using it in English. Some people are breaking it up. It just depends on what they need.”

Evolving the industry

OpenStax repeatedly receives feedback from users worldwide that appreciate the openness and availability of their books. Photo via openstax.org

As much as OpenStax is a disrupter to conventional textbook publishers, they would rather work in partnership with publishers like Murry’s former house Cengage rather than outright replacing them.

“What we've tried to do with those publishers is actually partner with them and say, we know that textbook prices were too high,” says Palmiotto. “Some of them partnered with us, Cengage, Riley, some of the other publishers, like Macmillan, incorporate our textbooks into their platforms so that instructors and students have that flexibility even with those publishers.

“Not every publisher wants to do that. That's their choice. But what we've tried to do is say ‘let's make an ecosystem.’ That's what we call it and let them participate in this movement that open education has become.”

With their textbooks on an open forum, it might seem that OpenStax texts would be susceptible to hacking or other unauthorized changes. But, according to Palmiotto, there’s a safeguard to that.

“We keep the standard version,” he says. “That's why a lot of people keep using it because they know that the version that we provide will be the most up-to-date version. But it is openly licensed. So, if we see that a school wants to teach the course in a slightly different way or if they want to recombine two different books to make a different course, take biology and make human biology, or take philosophy and make ethics or something, they can do that.

“But we still retain the standardized version that we redistribute and make sure that that's the high-quality one that people can look to. So nobody is getting back to our version and changing it, but they do have the opportunity to change their own.”

After more than a decade in the space, OpenStax repeatedly receives feedback from users worldwide that appreciate the openness and availability of their books.

“We have some great stories of different learners from all over the world that are non-traditional students facing barriers,” says Palmiotto. “And having a free textbook and not having to choose between food and their book or courseware makes a huge difference in their lives. If they have this flexibility in what they have to purchase, most people appreciate that choice.”

Pradeep Sharma, M.D. Anderson Chair Professor and department chair at the University of Houston, was named to the National Academy of Engineering. Photo via uh.edu

5 Houston researches named to prestigious engineering organization

newly named members

A national organization has named its latest cohort of new members — which includes Elon Musk — and five Houston-area innovators have also made the cut.

The National Academy of Engineering elected 111 new members and 22 international members, bringing the total U.S. membership to 2,388 and the number of international members to 310. The appointment is among the highest professional distinctions in an engineer's career. Each member has been found to have made significant contributions to "engineering research, practice, or education, including, where appropriate, significant contributions to the engineering literature," according to a news release.

The newly elected class will be formally inducted during the NAE's annual meeting on Oct. 2. The five Houston-area appointees and what they are being recognized for are:

  • Richard G. Baraniuk, C. Sidney Burrus Professor, Department of Electrical and Computer Engineering, Rice University. For the development and broad dissemination of open educational resources and for foundational contributions to compressive sensing.
  • Donald Nathan Meehan, president, CMG Petroleum Consulting Ltd.. For technical and business innovation in the application of horizontal well technology for oil and gas production.
  • Pradeep Sharma, M.D. Anderson Chair Professor and department chair, Department of Mechanical Engineering, University of Houston. For establishing the field of flexoelectricity, leading to the creation of novel materials and devices and insights in biophysical phenomena.
  • Leon Thomsen, chief scientist, Delta Geophysics Inc. For contributions to seismic anisotropy concepts that produced major advances in subsurface analysis.
  • David West, corporate fellow, Corporate Research and Innovation, Saudi Basic Industries Corp. For solutions to problems with technological, commercial, and societal impacts while advancing chemical sciences by applying reaction engineering fundamentals.

In a news release from UH, Sharma says it's the highest honor he could achieve as an engineer. The NAE recognized Sharma's work within flexoelectricity, a relatively understudied, exotic phenomenon that has the potential to provide similar functionality as piezoelectrics.

“Nature has provided us very few piezoelectric materials even though their applications in energy harvesting and in making sensors is very important. What we did was use theory to design materials that perform like piezoelectric ones, so that they can create electricity,” says Sharma in the release.

Sharma has worked at UH since 2004, and previously conducted research at General Electric for three years.

“The recognition of Professor Sharma by the National Academy of Engineering highlights a career full of outstanding research that has contributed to the understanding of engineering and helped uncover solutions for some of the world’s most significant problems,” says Paula Myrick Short, UH senior vice president for academic affairs and provost, in the release.

Over at Rice, Baraniuk's engineering career includes computational signal processing, most recently as it relates to machine learning. He's best known for spearheading the creation of Connexions, one of the first open-source education initiatives, and its successor, OpenStax, which publishes high-quality, peer-reviewed textbooks that are free to download.

“It’s auspicious timing that the NAE citation mentioned open education, because the seventh of February was the 10th anniversary of OpenStax publishing its first free and open textbook,” he says in a release from Rice. “It’s neat to have this happen in the same week, and worth pointing out that if ever there was a team effort, it was Connexions and OpenStax.”

Baraniuk has been at Rice since 1992, has three degrees in electrical and computer engineering.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice-led initiative looks to make cancer detection affordable, equitable

future of health care

A new initiative from two Houston organizations is hoping to develop affordable health care innovation for early cancer detection.

The Center for Innovation and Translation of POC Technologies for Equitable Cancer Care, or CITEC, will be managed through Rice360 Institute for Global Health Technologies, which is part of an ongoing international effort to prepare the future global health workforce.

Rice will be joined by Baylor College of Medicine, University of Texas MD Anderson Cancer Center, University of Sao Paulo, Barretos Cancer Hospital in Brazil, Mozambique Ministry of Health, and Universidade Eduardo Mondlane in Maputo, Mozambique.

“While early detection and treatment of cancer can improve survival, available tests for early cancer detection are too complex or too expensive for hospitals and clinics in medically underserved areas,” CITEC co-principal investigator Rebecca Richards-Kortum, a Rice bioengineering professor and director of Rice360, says in a news release.

The project is part of a five-year grant from the National Institutes of Health to launch a top-tier research center in the Texas Medical Center to develop point-of-care technologies that improve early cancer detection in low-resource in America and internationally that are effective and affordable. Rice’s leading collaboration group to help secure the grant includes engineers, oncologists and international global health partners from three continents. in low-resource settings in the United States and other countries.

CITEC will aim to target development of POC tests for oral, cervical and gastrointestinal cancers through the first-year grant from the National Institute of Biomedical Imaging and Bioengineering (NIBIB) of $1.3 million—up to $6.5 million over five years. CITEC is funded by a NIBIB grant.

Last month, NIBIB announced that CITEC will be one of six research centers that it will support, along with an additional center, through its Point of Care Technology Research Network (POCTRN).

Dr. Sharmila Anandasabapathy, vice president of global health at Baylor College of Medicine, and Tomasz Tkaczyk, bioengineering professor at Rice, are the other two cco-principals on the initiative.

“CITEC will identify needed technologies, accelerate their development, evaluate their performance and impact in diverse settings and train local users and technology developers to create and disseminate more equitable POC technologies,” Anandasabapathy says in the release.

Houston expert: How to celebrate National Entrepreneurship Month by recruiting, retaining talent

guest column

As November marks National Entrepreneurship Month and Small Business Saturday awaits Nov. 25, it is the perfect time to acknowledge and celebrate the contributions of small businesses to the U.S. economy.

According to the U.S. Small Business Administration, small businesses with 500 or fewer employees have accounted for two thirds of employment growth in the past quarter century. Further research from the Small Business Administration shows Texas alone is home to 3.1 million small businesses, making up 99.8 percent of Texas businesses overall and 44.5 percent of Texas employees.

The numbers are particularly impressive considering the unique business challenges entrepreneurs and small businesses have faced. In a tight labor market, competition for talent remains fierce, and small businesses and startups especially must rely on recruiting strong candidates to generate results. Yet entrepreneurs are often passionately focused on their product or service, which can obscure the finer details of their people management strategy.

Fortunately, there is a way for entrepreneurs to succeed both as business and people leaders. By providing learning and development opportunities, competitive compensation plans and an exceptional workplace culture, they can create an engaged workforce that shares their vision that can be competitive and even win the fight for top talent.

Learning and development opportunities

Especially for a small business, ongoing professional learning and development (L&D) is essential for teams to stay competitive. A robust L&D program also expands the talent pool by creating the possibility of hiring promising candidates who need to acquire additional skills for the role. L&D opportunities can also improve retention. According to 2022 research from McKinsey, lack of career development and advancement opportunities is one of the biggest factors driving employee attrition.

Leaders should assess the needs of their teams to determine the most important areas for L&D. These areas should help employees to develop core competencies necessary for business success, such as teamwork, problem solving and leadership. Offering a variety of options is best practice so employees can develop a wide range of skills, as is leveraging learning opportunities that exist through the normal course of work, like job shadowing and cross training. Tapping into existing experience and knowledge via in-house talent is another resource that can help promote learning and development through mentoring and collaboration.

Compensation and benefits

Working at a small business or startup offers many benefits to professionals in search of a fast-paced environment. However, compensation remains a critical piece of the puzzle for entrepreneurs who want to recruit and retain top talent. A 2022 survey from LinkedIn revealed 89 percent of employees said salary range was the most helpful element in a job description when deciding whether to apply.

While businesses need not disclose their salary bands in a job application, except as required by law, competitive compensation is an important factor for successful recruitment. Small businesses should research the market rate for each position in their organization and conduct a pay audit to understand whether current employees are being compensated fairly. Organizations with positive results should consider mentioning “competitive compensation and benefits package” in job ads or on their website.

For leaders who discover their pay is noncompetitive in their industry, it may be time to reevaluate budgets and create a plan to align salaries with the market averages. Salary growth does not need to happen overnight but can be a part of the bigger picture of recruiting and retaining talent. Leaders can also communicate the total compensation when factoring in the overall value of employer contributions provided in addition to salary, including things like bonuses, paid benefits and 401k contributions, wellness perks, etc.

Organizational culture

Company culture is a foundational element to recruiting and retaining top-tier talent. Research from Gallup found employees who feel connected to their organization's culture are 55 percent less likely to watch for job openings or actively seek out a new role.

As many founders know well, tight-knit teams can work with greater agility than larger organizations. However, on a cultural level, small business and startups face unique culture challenges due to their size. Small organizations’ culture is heavily influenced by the behaviors of leaders, who are highly visible to their employees. When conflicts arise between two employees, the entire team may be drawn in. Employees can also feel under scrutiny if micromanagement is experienced in their workplace.

To build a strong culture, leaders need to have open conversations and gather feedback, including through anonymous survey data. On a small team, the anonymity of company culture surveys becomes even more critical. Employees may feel concerned that management will easily recognize their voice, so survey results should be handled with the utmost discretion and accessible only to essential personnel. When sharing results publicly, leaders should withhold any specific comments or responses in favor of broader statistics about the entire group or identified patterns in the feedback. It is important for leaders to focus on the learnings and awareness the feedback can offer, as opposed to spending time wondering or trying to identify who said what. Even well intended interest around the source of feedback can lead to feelings of breached trust or, in extreme cases, instances of retaliation.

Trust is an essential component, and these steps will help employees in a small business feel comfortable sharing their honest thoughts. Provided management provides open communication and acts on employee survey feedback, employees will also feel heard and that their employer truly cares for their wellbeing.

This month, entrepreneurs across the country should take a moment from their busy schedules to celebrate their successes. National Entrepreneurship Month is an opportunity to recognize the importance of small businesses to the economy. It is also a chance to strengthen small businesses and bolster their ability to compete for talent through building a robust culture and supporting employees.

------

Karen Leal is performance specialist with Houston-based Insperity, a provider of human resources offering a suite of scalable HR solutions available in the marketplace.

Houston initiative receives $4M grant to promote biomedical entrepreneurship

fresh funding

The National Institute of Health has awarded a $4 million grant to a Houston-area initiative in the name of sparking biomedical activity.

The grant will create a new Research Evaluation and Commercialization Hub, known as REACH, in Houston. The team behind the Gulf Coast Consortium — one of the world’s largest inter-institutional cooperatives, which includes eight of Houston’s medical research leading lights — has been hard at work to bring REACH-GCC to fruition.

The result? A multidisciplinary means of promoting biomedical entrepreneurship, bringing innovators from concept to commercialization.

“I can tell you that a lot of those potential users came out of our research consortium. Those users span from a focus on mental health to antibiotic resistance to regenerative medicine to pain management to, of course, cancer,” says Suzanne Tomlinson of Rice University.

Tomlinson is the director of GCC research programs and worked with Stan Watowich of The University of Texas Medical Branch to create the grant. Peter Davies helped to submit it through Texas A&M University.

One of the dozen research and educational programs that Tomlinson directs is the Innovative Drug Discovery and Development Consortium.

“Within that, we have established a wide network of drug to drug discovery and development cores,” she says.

The vast majority of those are funded by CPRIT (Cancer Prevention and Research Institute of Texas), and Tomlinson and Watowich (the chair of IDDD’s steering committee) were lead developers and authors of the grant to create TMCi’s Accelerator for Cancer Therapeutics (ACT). That accelerator is a model for what GCC-REACH may do for taking other innovations from discovery to market.

“We get close to a billion dollars in research monies a year coming into the Medical Center. The question is, ‘Are we seeing a lot of those dollars resulting in products that benefit patients?’ And the answer always is, ‘We can do better,’” says Watowich.

How will GCC-REACH help to do that? By combining the forces of all eight full members of the GCC, plus outside help when it’s needed. Watowich sets for the example of a budding entrepreneur at his home institution, UTMB. That researcher could potentially receive guidance from an MD Anderson expert in immunotherapies or a Rice scientist who focuses on nanotechnology delivery systems.

“This grant is designed to put together a bespoke team of whatever is needed to have a discussion with and figure out what's the market for this technology. How might it get there?’” says Watowich.

Those options could include setting up a startup company, but could also mean licensing the idea to someone else, whether it’s a company or an institution.

“Our goal is, we help each other. We help ourselves. We help the patient population. And we do that through working together,” he continues.

Though it sounds like GCC-REACH could be a competitor to other accelerators, Watowich doesn’t see it that way. He sees the new hub as working with very early-stage creators who may still take part in those existing accelerators in the future. And the team hopes to do so quickly. The goal is to launch this month. Watowich says that the plan is to use the NIH’s $4 million to launch around 60 early stage biomedical companies over the next four years.

A variety of nascent founders — regardless of their type of innovative solution — will take part in the initiative.

“It can be a device, it could be an AI, it could be an app, it could be digital health, it could be therapeutics,” says Watowich. “We have experts across all of these areas that could help provide guidance and mentoring to try to move those companies forward.”