OpenStax, founded out of Rice University, has continued its growth, adding new partners and textbooks. Photo via openstax.org

If everyone that attended a college or university were polled, they’d all likely agree that one of the worst parts of the experience was the rising costs of textbooks.

In an effort to combat the hefty price tag of assigned texts, OpenStax, a nonprofit education startup out of Rice University, which is on a mission to increase educational access for all, seeks to democratize high-quality education by offering free, peer-reviewed, openly licensed textbooks for students and knowledge seekers across the globe.

This month, OpenStax will add to its 57 open education resources, or OER, titles with a full version of John McMurry's popular pre-med textbook, Organic Chemistry, under an open license to honor his late son, Peter, who passed away in 2019 after losing his battle with cystic fibrosis.

“The author, John McMurry, granted us the ability to publish the 10th edition openly,” Anthony Palmiotto, director of higher education at OpenStax, tells InnovationMap. “So, the most widely used organic chemistry textbook went from being one of the most expensive undergraduate texts on the market (almost $100), to a free and open text, making this a watershed moment for OER.”

This school year, OpenStax is adding 16 academic institutions onto its platform, including Georgia State University, Southwest Texas Junior College, Texas A&M University-Commerce, University of San Diego, and more. It's the largest batch of new schools OpenStax has onboarded in a year, Palmiotto says in a news release.

Founded to increase access

Richard Baraniuk, a professor of Electrical and Computer Engineering at Rice University, founded OpenStax. Photo via rice.edu

OpenStax founder and director Richard Baraniuk, a professor of Electrical and Computer Engineering at Rice University, started the OER publisher in 1999 to remove financial barriers and make educational resources more widely available. Much like increasing access to McMurry’s Organic Chemistry, the goal is to continue to support both learners and educators by providing easily accessible and well-developed materials.

“Our mission is to support all learners in their educational pursuits by providing access to high-quality education,” Palmiotto says. “Richard Baraniuk founded it initially as a way for faculty and others to get their material and their knowledge in the form of textbooks and other learning materials to students.

“And then born out of that, we started this robust textbook development and course material development program where we put out the highest-quality materials we can in a way that fits the way courses are taught. Meaning convenience and scope and sequence and other needs that instructors must use textbooks. So really the access was really the start of it, increasing that and lowering barriers to education, and then a lot flowed from that.”

OpenStax’s library of OER titles, which are published under a Creative Commons Attribution license, are free and easily accessible on the go and usable on any device in multiple formats, including digital and PDF.

Funded by philanthropic supporters, OpenStax normally works to openly access five or six books per year, working mostly on introductory courses. Most recently, the Texas Higher Education Coordinating Board funded the publisher to do a series of nursing books, eight in total.

“Before the nursing books, we were doing business books,” Palmiotto says. “Murry’s book builds out our science offerings, so we're thinking about the different areas that students take that can be barriers for them to move up in education and succeed. From there, we’ll continue to think about how a free textbook can help students through that process.”

Tapping into tech

Currently, OpenStax has over 7.5 million users in the formal education space, primarily in higher education introductory courses, as well as grades K–12. Photo via openstax.org

In addition to nursing, OpenStax is working towards releasing books in data science and computer science, including programming, workplace software and, eventually, artificial intelligence.

“AI is a big deal to us,” says Palmiotto. “We're thinking about it a lot, and in the books themselves, we're incorporating as best we can how AI plays into Data Science, Computer Science and Python Programming those. We’re thinking about how AI could be used and will impact programming, for example. But the AI landscape is changing as we go, and that's another reason we don't just put out the books, we maintain them.

“So, we can continually update them. Once we publish, six months later, we can publish updates or additions to reflect what's happening in courses or in professions or in the workforce to reflect how AI is being used as new software is released and so on.”

As OpenStax continues to build on its OER title database, they are using multiple methods of outreach to reach as many people as possible. Currently, they have over 7.5 million users in the formal education space, primarily in higher education introductory courses, as well as grades K–12.

“Over 140 countries are using our material,” says Palmiotto. “We're not as easily able to track how many students have used our material in all those other countries. But that's not the point, we want to put it out there. We know it's being used. We want to help as much as possible. But it is being used in all those countries and in different ways. Some people are translating it. Some people are using it in English. Some people are breaking it up. It just depends on what they need.”

Evolving the industry

OpenStax repeatedly receives feedback from users worldwide that appreciate the openness and availability of their books. Photo via openstax.org

As much as OpenStax is a disrupter to conventional textbook publishers, they would rather work in partnership with publishers like Murry’s former house Cengage rather than outright replacing them.

“What we've tried to do with those publishers is actually partner with them and say, we know that textbook prices were too high,” says Palmiotto. “Some of them partnered with us, Cengage, Riley, some of the other publishers, like Macmillan, incorporate our textbooks into their platforms so that instructors and students have that flexibility even with those publishers.

“Not every publisher wants to do that. That's their choice. But what we've tried to do is say ‘let's make an ecosystem.’ That's what we call it and let them participate in this movement that open education has become.”

With their textbooks on an open forum, it might seem that OpenStax texts would be susceptible to hacking or other unauthorized changes. But, according to Palmiotto, there’s a safeguard to that.

“We keep the standard version,” he says. “That's why a lot of people keep using it because they know that the version that we provide will be the most up-to-date version. But it is openly licensed. So, if we see that a school wants to teach the course in a slightly different way or if they want to recombine two different books to make a different course, take biology and make human biology, or take philosophy and make ethics or something, they can do that.

“But we still retain the standardized version that we redistribute and make sure that that's the high-quality one that people can look to. So nobody is getting back to our version and changing it, but they do have the opportunity to change their own.”

After more than a decade in the space, OpenStax repeatedly receives feedback from users worldwide that appreciate the openness and availability of their books.

“We have some great stories of different learners from all over the world that are non-traditional students facing barriers,” says Palmiotto. “And having a free textbook and not having to choose between food and their book or courseware makes a huge difference in their lives. If they have this flexibility in what they have to purchase, most people appreciate that choice.”

Pradeep Sharma, M.D. Anderson Chair Professor and department chair at the University of Houston, was named to the National Academy of Engineering. Photo via uh.edu

5 Houston researches named to prestigious engineering organization

newly named members

A national organization has named its latest cohort of new members — which includes Elon Musk — and five Houston-area innovators have also made the cut.

The National Academy of Engineering elected 111 new members and 22 international members, bringing the total U.S. membership to 2,388 and the number of international members to 310. The appointment is among the highest professional distinctions in an engineer's career. Each member has been found to have made significant contributions to "engineering research, practice, or education, including, where appropriate, significant contributions to the engineering literature," according to a news release.

The newly elected class will be formally inducted during the NAE's annual meeting on Oct. 2. The five Houston-area appointees and what they are being recognized for are:

  • Richard G. Baraniuk, C. Sidney Burrus Professor, Department of Electrical and Computer Engineering, Rice University. For the development and broad dissemination of open educational resources and for foundational contributions to compressive sensing.
  • Donald Nathan Meehan, president, CMG Petroleum Consulting Ltd.. For technical and business innovation in the application of horizontal well technology for oil and gas production.
  • Pradeep Sharma, M.D. Anderson Chair Professor and department chair, Department of Mechanical Engineering, University of Houston. For establishing the field of flexoelectricity, leading to the creation of novel materials and devices and insights in biophysical phenomena.
  • Leon Thomsen, chief scientist, Delta Geophysics Inc. For contributions to seismic anisotropy concepts that produced major advances in subsurface analysis.
  • David West, corporate fellow, Corporate Research and Innovation, Saudi Basic Industries Corp. For solutions to problems with technological, commercial, and societal impacts while advancing chemical sciences by applying reaction engineering fundamentals.

In a news release from UH, Sharma says it's the highest honor he could achieve as an engineer. The NAE recognized Sharma's work within flexoelectricity, a relatively understudied, exotic phenomenon that has the potential to provide similar functionality as piezoelectrics.

“Nature has provided us very few piezoelectric materials even though their applications in energy harvesting and in making sensors is very important. What we did was use theory to design materials that perform like piezoelectric ones, so that they can create electricity,” says Sharma in the release.

Sharma has worked at UH since 2004, and previously conducted research at General Electric for three years.

“The recognition of Professor Sharma by the National Academy of Engineering highlights a career full of outstanding research that has contributed to the understanding of engineering and helped uncover solutions for some of the world’s most significant problems,” says Paula Myrick Short, UH senior vice president for academic affairs and provost, in the release.

Over at Rice, Baraniuk's engineering career includes computational signal processing, most recently as it relates to machine learning. He's best known for spearheading the creation of Connexions, one of the first open-source education initiatives, and its successor, OpenStax, which publishes high-quality, peer-reviewed textbooks that are free to download.

“It’s auspicious timing that the NAE citation mentioned open education, because the seventh of February was the 10th anniversary of OpenStax publishing its first free and open textbook,” he says in a release from Rice. “It’s neat to have this happen in the same week, and worth pointing out that if ever there was a team effort, it was Connexions and OpenStax.”

Baraniuk has been at Rice since 1992, has three degrees in electrical and computer engineering.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

New Houston venture studio emerges to target early-stage hardtech, energy transition startups

funding the future

The way Doug Lee looks at it, there are two areas within the energy transition attracting capital. With his new venture studio, he hopes to target an often overlooked area that's critical for driving forward net-zero goals.

Lee describes investment activity taking place in the digital and software world — early stage technology that's looking to make the industry smarter. But, on the other end of the spectrum, investment activity can be found on massive infrastructure projects.

While both areas need funding, Lee has started his new venture studio, Flathead Forge, to target early-stage hardtech technologies.

“We are really getting at the early stage companies that are trying to develop technologies at the intersection of legacy industries that we believe can become more sustainable and the energy transition — where we are going. It’s not an ‘if’ or ‘or’ — we believe these things intersect,” he tells EnergyCapital.

Specifically, Lee's expertise is within the water and industrial gas space. For around 15 years, he's made investments in this area, which he describes as crucial to the energy transition.

“Almost every energy transition technology that you can point to has some critical dependency on water or gas,” he says. “We believe that if we don’t solve for those things, the other projects won’t survive.”

Lee, and his brother, Dave, are evolving their family office to adopt a venture studio model. They also sold off Azoto Energy, a Canadian oilfield nitrogen cryogenic services business, in December.

“We ourselves are going through a transition like our energy is going through a transition,” he says. “We are transitioning into a single family office into a venture studio. By doing so, we want to focus all of our access and resources into this focus.”

At this point, Flathead Forge has seven portfolio companies and around 15 corporations they are working with to identify their needs and potential opportunities. Lee says he's gearing up to secure a $100 million fund.

Flathead also has 40 advisers and mentors, which Lee calls sherpas — a nod to the Flathead Valley region in Montana, which inspired the firm's name.

“We’re going to help you carry up, we’re going to tie ourselves to the same rope as you, and if you fall off the mountain, we’re falling off with you,” Lee says of his hands-on approach, which he says sets Flathead apart from other studios.

Another thing that's differentiating Flathead Forge from its competition — it's dedication to giving back.

“We’ve set aside a quarter of our carried interest for scholarships and grants,” Lee says.

The funds will go to scholarships for future engineers interested in the energy transition, as well as grants for researchers studying high-potential technologies.

“We’re putting our own money where our mouth is,” Lee says of his thesis for Flathead Forge.

------

This article originally ran on EnergyCapital.

Houston-based lunar mission's rocky landing and what it means for America's return to the moon

houston, we have a problem

A private U.S. lunar lander tipped over at touchdown and ended up on its side near the moon’s south pole, hampering communications, company officials said Friday.

Intuitive Machines initially believed its six-footed lander, Odysseus, was upright after Thursday's touchdown. But CEO Steve Altemus said Friday the craft “caught a foot in the surface," falling onto its side and, quite possibly, leaning against a rock. He said it was coming in too fast and may have snapped a leg.

“So far, we have quite a bit of operational capability even though we’re tipped over," he told reporters.

But some antennas were pointed toward the surface, limiting flight controllers' ability to get data down, Altemus said. The antennas were stationed high on the 14-foot (4.3-meter) lander to facilitate communications at the hilly, cratered and shadowed south polar region.

Odysseus — the first U.S. lander in more than 50 years — is thought to be within a few miles (kilometers) of its intended landing site near the Malapert A crater, less than 200 miles (300 kilometers) from the south pole. NASA, the main customer, wanted to get as close as possible to the pole to scout out the area before astronauts show up later this decade.

NASA's Lunar Reconnaissance Orbiter will attempt to pinpoint the lander's location, as it flies overhead this weekend.

With Thursday’s touchdown, Intuitive Machines became the first private business to pull off a moon landing, a feat previously achieved by only five countries. Japan was the latest country to score a landing, but its lander also ended up on its side last month.

Odysseus' mission was sponsored in large part by NASA, whose experiments were on board. NASA paid $118 million for the delivery under a program meant to jump-start the lunar economy.

One of the NASA experiments was pressed into service when the lander's navigation system did not kick in. Intuitive Machines caught the problem in advance when it tried to use its lasers to improve the lander's orbit. Otherwise, flight controllers would not have discovered the failure until it was too late, just five minutes before touchdown.

“Serendipity is absolutely the right word,” mission director Tim Crain said.

It turns out that a switch was not flipped before flight, preventing the system's activation in space.

Launched last week from Florida, Odysseus took an extra lap around the moon Thursday to allow time for the last-minute switch to NASA's laser system, which saved the day, officials noted.

Another experiment, a cube with four cameras, was supposed to pop off 30 seconds before touchdown to capture pictures of Odysseus’ landing. But Embry-Riddle Aeronautical University’s EagleCam was deliberately powered off during the final descent because of the navigation switch and stayed attached to the lander.

Embry-Riddle's Troy Henderson said his team will try to release EagleCam in the coming days, so it can photograph the lander from roughly 26 feet (8 meters) away.

"Getting that final picture of the lander on the surface is still an incredibly important task for us,” Henderson told The Associated Press.

Intuitive Machines anticipates just another week of operations on the moon for the solar-powered lander — nine or 10 days at most — before lunar nightfall hits.

The company was the second business to aim for the moon under NASA's commercial lunar services program. Last month, Pittsburgh's Astrobotic Technology gave it a shot, but a fuel leak on the lander cut the mission short and the craft ended up crashing back to Earth.

Until Thursday, the U.S. had not landed on the moon since Apollo 17's Gene Cernan and Harrison Schmitt closed out NASA's famed moon-landing program in December 1972. NASA's new effort to return astronauts to the moon is named Artemis after Apollo's mythological twin sister. The first Artemis crew landing is planned for 2026 at the earliest.

3 female Houston innovators to know this week

who's who

Editor's note: Welcome to another Monday edition of Innovators to Know. Today I'm introducing you to three Houstonians to read up about — three individuals behind recent innovation and startup news stories in Houston as reported by InnovationMap. Learn more about them and their recent news below by clicking on each article.

Emma Konet, co-founder and CTO of Tierra Climate

Emma Konet, co-founder and CTO of Tierra Climate, joins the Houston Innovators Podcast. Photo via LinkedIn

If the energy transition is going to be successful, the energy storage space needs to be equipped to support both the increased volume of energy needed and new energies. And Emma Konet and her software company, Tierra Climate, are targeting one part of the equation: the market.

"To me, it's very clear that we need to build a lot of energy storage in order to transition the grid," Konet says on the Houston Innovators Podcast. "The problems that I saw were really on the market side of things." Read more.

Cindy Taff, CEO of Sage Geosystems

Houston-based Sage Geosystems announced the first close of $17 million round led by Chesapeake Energy Corp. Photo courtesy of Sage

A Houston geothermal startup has announced the close of its series A round of funding.

Houston-based Sage Geosystems announced the first close of $17 million round led by Chesapeake Energy Corp. The proceeds aim to fund its first commercial geopressured geothermal system facility, which will be built in Texas in Q4 of 2024. According to the company, the facility will be the first of its kind.

“The first close of our Series A funding and our commercial facility are significant milestones in our mission to make geopressured geothermal system technologies a reality,” Cindy Taff, CEO of Sage Geosystems, says. Read more.

Clemmie Martin, chief of staff at The Cannon

With seven locations across the Houston area, The Cannon's digital technology allows its members a streamlined connection. Photo courtesy of The Cannon

After collaborating over the years, The Cannon has acquired a Houston startup's digital platform technology to become a "physical-digital hybrid" community.

Village Insights, a Houston startup, worked with The Cannon to create and launch its digital community platform Cannon Connect. Now, The Cannon has officially acquired the business. The terms of the deal were not disclosed.

“The integration of a world-class onsite member experience and Cannon Connect’s superior virtual resource network creates a seamless, streamlined environment for member organizations,” Clemmie Martin, The Cannon’s newly appointed chief of staff, says in the release. “Cannon Connect and this acquisition have paved new pathways to access and success for all.” Read more.