The project was part of a year-long senior design capstone by six students, known as Team Bay-Max, in Rice's Oshman Engineering Design Kitchen. Photo by Jeff Fitlow/Rice University

A team of Rice University engineering students has developed a new way for underwater robots to move around, save power and work more efficiently and quietly.

The robot uses reversible hydrogen fuel cell-based buoyancy control devices that convert water into hydrogen and oxygen (and the reverse) using electricity. Traditional underwater robots use thrusters or large pumps and propellers to change and hold depth, which can be heavy, have higher costs and use more energy. The use of reversible hydrogen fuel cells with balloons, allows the new robot to smoothly adjust its depth with less energy usage, according to a statement from Rice.

The project was part of a year-long senior design capstone by six students, known as Team Bay-Max, in Rice's Oshman Engineering Design Kitchen.

The students—Andrew Bare, Spencer Darwall, Noah Elzner, Rafe Neathery, Ethan Peck and Dan Zislis— won second place in the Willy Revolution Award for Outstanding Innovation at the Huff OEDK Engineering Design Showcase held at the Ion last month.

“Having spent a year on it now and putting so much time into it, getting to see the result of all that work come together is really rewarding,” Peck said in the statement.

“With a project like this, integration was critical,” Zislis added. “Another takeaway for me is the importance of determining a clear scope for any given project. With this robot, we could have focused on a lot of different things. For instance, we could have worked on improving fuel cell efficiency or making a robotic arm. Instead, we chose to keep these other elements simple so as not to divert focus away from the main part, which is the buoyancy control device. This kind of decision-making process is not just part of good engineering, but it’s relevant with everything in life.”

Elzner, for instance, focused on the dashboard that the robot feeds information to as it collects data from different sensors. It displays core system information, real-time graphs of the robot’s location and a simulation of its relative orientation, according to the statement.

Darwall, took a " deep dive into control theory and learn(ed) new software" to incorporate the video game joystick that allows the robot to combine manual control with an automatic stabilizing algorithm.

The proof-of-concept robot has potential applications in environmental monitoring, oceanographic research, and military and industrial tasks, according to Rice.

The team based the project on an academic paper by Houston researchers that showed that fuel cell-enabled depth control could reduce autonomous underwater vehicles’ energy consumption by as much as 85 percent.

It was authored by Rice professor Fathi Ghorbel and members of the University of Houston's Zheng Chen lab.

“This collaborative research aims to develop tetherless continuum soft engines that utilize reversible proton exchange membrane fuel cells and water electrolyzers to drive volume-mass transformation," Ghorbel said in a statement. "Through this design project, the BayMax team proved the efficacy of this technology in AUV interaction with the physical world.”

Ghorbel, Rice mechanical engineering lecturer David Trevas, and Professor in the Practice, Electrical and Computer and Engineering Gary Woods mentored the team.

Last month Rice also held its 24th annual Rice Business Plan Competition, doling out more than $1.5 million in investment and cash prizes to the top teams. Click here to see what student-led startups took home awards.
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

4 Houston innovators join prestigious group of inventors as senior members

top honor

Houston is home to four new senior members of the National Academy of Inventors.

To be eligible to be an NAI Senior Member, candidates must be active faculty, scientists and administrators from NAI member institutions that have demonstrated innovation and produced technologies that have “brought, or aspire to bring, real impact on the welfare of society,” according to the NAI. The members have also succeeded in patents, licensing and commercialization, and educating and mentoring.

The University of Houston announced that three professors were selected to join the prestigious NAI list of senior members. UH now has 39 faculty members on the NAI list.

“We congratulate these three esteemed colleagues on being named NAI Senior Members,” Ramanan Krishnamoorti, vice president for energy and innovation at UH, said in a news release. “This recognition is a testament to their dedication, research excellence and pursuit of real-world impact by knowledge and technologies. Their achievements continue to elevate the University as a leader in innovation and entrepreneurship.”

UH’s new senior members include:

  • Birol Dindoruk, the American Association of Drilling Engineers Endowed Professor of Petroleum Engineering and Chemical and Biomolecular Engineering at the Cullen College of Engineering. He is known for his research in carbon capture and storage, fluid-rock interactions and hydrogen storage. He holds three patents.
  • Megan Robertson, the Neal R. Amundson professor of chemical and biomolecular engineering at UH’s Cullen College of Engineering. She is developing new polymers and groundbreaking strategies for recycling and reusing plastics. Robertson currently has three patents and two more patent applications pending.
  • Francisco Robles Hernandez, a professor of mechanical engineering technology at the UH College of Technology. He holds four patents, and several others are under review. His work focuses on carbon materials, including pioneering work with graphene and designs with steel and aluminum used in automotives and railroads.

“As an inventor, this is one of the highest honors you can be awarded, so I am very proud to receive it,” Robles Hernandez said in a news release. “UH has been instrumental in supporting my research and innovation efforts, but it’s the creativity of the students here that makes it successful.”

Allison Post, associate director of electrophysiology research and innovations and manager of innovation partnerships at the Texas Heart Institute at Baylor College of Medicine, also made the list.

Post was recognized for her work in biomedical engineering and commitment to advancing cardiovascular care through innovations. Post is the youngest member to be inducted this year.

Other notable Texas honorees include Emma Fan from the University of Texas, Arum Han from Texas A&M and Panos Shiakolas at UT Arlington.

In 2024, Edward Ratner, a computer information systems lecturer in the Department of Information Science Technology at the University of Houston’s Cullen College of Engineering, and Omid Veiseh, a bioengineer at Rice University and director of the Biotech Launch Pad, were named NAI fellows.

The Senior Member Induction Ceremony will honor the 2025 class at NAI’s Annual Conference June 23-26 in Atlanta, Georgia.

Plans revealed for $2 billion expansion of Houston convention district

coming soon

Mayor John Whitmire and Houston First Corporation shared a new master plan for the George R. Brown Convention Center and its surrounding area last week. The plan features expanded exhibition space, a living roof, a pedestrian plaza with access to Toyota Center and more.

The project will be funded by the state’s portion of incremental Hotel Occupancy Tax revenue growth within a three-mile radius of the GRB for 30 years, which is estimated to total about $2 billion, according to a release from Houston First.

The first phase of the project, which is slated to be completed by 2028, will focus on developing a 700,000-square-foot convention facility known as GRB South.

GRB South will feature:

  • Two exhibition halls, totaling 150,000 square feet
  • A 50,000-square-foot multipurpose hall that opens to the new Central Plaza
  • The 100,000-square-foot Central Plaza, an extension of the Avenida Plaza that will connect to Discovery Green and Toyota Center
  • Atrium flex hall totaling 25,000 square feet
  • 225,000 square feet of contiguous exhibit space
  • A 60,000-80,000-square-foot ballroom
  • Ground-level spaces for retail and restaurants
  • A central atrium, providing each level with natural light

The design of the space is inspired by the Houston area's native prairies and will use low-carbon materials, high-efficiency building systems with rainwater collection and water-reduction strategies. A living roof on top of the GRB South will also have the potential for solar integration.

"It is imperative for us to stay competitive and meet the needs of our meetings and convention customers,” Michael Heckman, president and CEO of Houston First, said in the release. “This project will not only accomplish that but will establish a gathering space that will be the epicenter for entertainment, sports, and city-wide events, accentuating our ability to capitalize on Houston's unique offerings.”

The full campus renovation is expected to wrap in 2038, and construction will be managed in phases. Houston First reports that construction should not impact events currently scheduled as GRB.

“This project is truly transformative for downtown Houston, a lasting legacy that will solidify our position as a top-tier convention and entertainment destination,” Mayor John Whitmire said in the release. “Most importantly, we are creating a space that will build community, foster connection, and shape the future of Houston.”

Explore renderings of the plans below.

Rendering courtesy Houston First.

Tech company floats plan for futuristic shipyard on Texas Gulf Coast

Anchors Away

Armed with $600 million in fresh funding, Austin-based Saronic Technologies has set its sights on building a shipyard for producing remotely operated military vessels — and the futuristic shipyard could be located along the Texas Gulf Coast.

The shipyard, dubbed Port Alpha, would manufacture unstaffed midsize and large Navy ships known as “maritime drones.” Defense Newsreported that Texas — with the Gulf Coast being a prime target — is among the places under consideration for the shipyard. A timeline for construction of the shipyard hasn’t been set, and a cost estimate for the project hasn’t been revealed.

“A core principle of Saronic is that we design our vessels for autonomy from the keel up,” Saronic co-founder and CEO Dino Mavrookas, a former Navy SEAL, says in a news release. “We will take the same approach with Port Alpha, designing a shipyard from the ground up to produce at a speed and scale not seen since World War II.”

Saronic says Port Alpha would boost the U.S. shipbuilding industry, which is practically nonexistent. Consulting giant McKinsey & Co. reported in 2024 that the U.S. has gone from building about 5 percent of the world’s ocean-going ships in the 1970s to about 0.2 percent today. China, Japan, and South Korea now dominate global shipbuilding.

“The last years have seen a degradation in the capacity for the United States to build ships and to manufacture core needs of the country. I am excited to back Saronic and its focus on revitalizing shipbuilding in America, while also building products to defend those interests,” says investor and tech entrepreneur Elad Gil, who led the $600 million funding round.

The $600 million round, announced February 18, pushes the value of Saronic to $4 billion. Investors in Saronic, founded in 2022, include Gil, General Catalyst, a16z, Caffeinated Capital, and 8VC.

Last year, Saronic raised $175 million from investors, lifting the company’s value to $1 billion. In 2023, the startup collected $55 million from investors.

In the past three years, Saronic has focused on manufacturing three small remotely controlled vessels, or “maritime drones,” for the Navy: the six-foot-long Spyglass, 14-foot-long Cutlass, and 24-foot-long Corsair. Port Alpha would specialize in much bigger remotely controlled ships for the Navy. The Navy has expressed interest in assembling a modern fleet that combines staffed and unstaffed vessels.

Saronic’s nearly 420,000-square-foot factory in Austin manufactures the Spyglass, Cutlass and Corsair boats.

“The velocity and economics of warfare have fundamentally evolved, and several of our own team have witnessed firsthand how unmanned systems became true force multipliers in Afghanistan and in other theaters of conflict,” says Paul Kwan, managing director of General Catalyst.

---

This story originally was published on our sister site CultureMap Austin.