The Rice Alliance Clean Energy Accelerator, a hybrid program based out of the Ion, has named its latest cohort. Photo via Getty Images

The Rice Alliance Clean Energy Accelerator has named 12 early-stage energy technology companies to its latest cohort.

The companies, which hail from six states and two countries, are providing solutions across carbon management, advanced materials, hydrogen, solar, and more. The program, which operates in a hybrid capacity based out of the Ion, will run for 10 weeks beginning July 9 and culminating in a demo day alongside the 21st Rice Alliance Energy Tech Venture Forum on September 12. Throughout the duration, the companies will come to Houston three times.

"As Houston’s preeminent energy startup accelerator, this is an open door to the region’s energy ecosystem for ventures from around the world and puts them through a rigorous curriculum to bolster their fundraising efforts, prepare them for accelerated adoption into the marketplace and expand their connections for potential pilots, partnerships and sales," per a Rice Alliance news release.

This cohort's executives-in-residence, or XiRs, include Tim Franklin-Hensler, John Jeffers, Ritu Sachdeva and Nick Tillmann. In addition to these innovators — who bring their expertise, mentorship, and strategic growth planning — the program is ed by the Rice Alliance’s Kerri Smith and Matt Peña.

Class 4 for the Rice Alliance Clean Energy Accelerator includes:

  • 1s1 Energy, based in Portola Valley, California, develops electrolyzers with boron-based materials so that utilities and heavy industry can produce low-cost green hydrogen to decarbonize existing and future businesses.
  • Houston-based Capwell provides a cost-effective, modular, and easily transportable system that eliminates methane emissions from wells for state governments and oil and as companies.
  • CarboMat, from Calgary, Alberta, provides a clean technology that produces low-cost, sustainable, and mid-tier grade carbon fibers at a 60 percent reduced production cost and 50 percent reduced GHG emissions to composite manufacturers in industries that require large volumes of inexpensive carbon fibers for production of commodity grade products.
  • Cleveland, Ohio-headquartered Corrolytics offers cutting-edge technology that detects corrosion on-site and in near real-time, providing accurate insights into microbial corrosion and general corrosion.
  • Geolabe, from Los Almos, New Mexico, provides an automated methane monitoring system that helps organizations measure environmental performance and introduce and prioritize remedial actions.
  • Kaizen, which operates in Tomball just outside of Houston, provides hydrogen based microgrids that enable fleet electrification at sites that are grid constrained or off grid. The solutions emit no local emissions and reduce global emissions.
  • Los Angeles-based Mitico offers services and equipment to capture carbon dioxide with a patent-pending granulated metal carbonate sorption technology captures over 95 percent of the CO2 emitted from post-combustion point sources.
  • OceanBit, headquartered in Honolulu, provides ocean thermal energy technologies and power plants that delivers abundant, affordable, base load power to utilities and companies who need a firm, dispatchable, and 24/7 carbon-free source of electricity.
  • From Ontario, Canada, QEA Tech provides detailed building envelope energy audits using drones, thermography, and proprietary AI based software.
  • Houston-based Sensytec offers patented sensors, delivering real-time, accurate material performance data of concrete and advanced building materials.
  • Vroom Solar, based in Springfield, Missouri, provides Smart Solar Management technology that optimizes solar and optional AC power differently at a lower cost and smaller footprint for solar customers who need affordable, efficient, and user-friendly power anywhere.
  • VulcanX, from Vancouver, Canada, provides hydrogen and solid carbon to gas utilities, steel manufacturers and ammonia producers who require low-cost and low-emission hydrogen.

Since launching in 2021, the Clean Energy Accelerator has accelerated 43 ventures that have raised more than $166 million in funding. According to the program, these companies have piloted their technologies, connected with investors, created jobs, and many relocated to Houston.

The 2023 cohort included 15 clean energy companies.

------

This article originally ran on EnergyCapital.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

United breaks ground on $177 million facility and opens tech center at IAH

off the ground

United Airlines announced new infrastructure investments at George Bush Intercontinental Airport as part of the company’s ongoing $3.5 billion investment into IAH.

United broke ground on a new $177 million Ground Service Equipment (GSE) Maintenance Facility this week that will open in 2027.

The 140,000-square-foot GSE facility will support over 1,800 ground service vehicles and with expansive repair space, shop space and storage capacity. The GSE facility will also be targeted for LEED Silver certification. United believes this will provide more resources to assist with charging batteries, fabricating metal and monitoring electronic controls with improved infrastructure and modern workspaces.

Additionally, the company opened its new $16 million Technical Operations Training Center.

The center will include specialized areas for United's growing fleet, and advanced simulation technology that includes scenario-based engine maintenance and inspection training. By 2032, the Training Center will accept delivery of new planes. This 91,000-square-foot facility will include sheet metal and composite training shops as well.

The Training Center will also house a $6.3 million Move Team Facility, which is designed to centralize United's Super Tug operations. United’s IAH Move Team manages over 15 Super Tugs across the airfield, which assist with moving hundreds of aircraft to support flight departures, remote parking areas, and Technical Operations Hangars.

The company says it plans to introduce more than 500 new aircraft into its fleet, and increase the total number of available seats per domestic departure by nearly 30%. United also hopes to reduce carbon emissions per seat and create more unionized jobs by 2026.

"With these new facilities, Ground Service Equipment Maintenance Facility and the Technical Operations Training Center, we are enhancing our ability to maintain a world-class fleet while empowering our employees with cutting-edge tools and training,” Phil Griffith, United's Vice President of Airport Operations, said in a news release. “This investment reflects our long-term vision for Houston as a critical hub for United's operations and our commitment to sustainability, efficiency, and growth."

UH study uncovers sustainable farming methods for hemp production

growth plan

A new University of Houston study of hemp microbes can potentially assist scientists in creating special mixtures of microbes to make hemp plants produce more CBD or have better-quality fibers.

The study, led by Abdul Latif Khan, an assistant professor of biotechnology at the Cullen College of Engineering Technology Division, was published in the journal Scientific Reports from the Nature Publishing Group. The team also included Venkatesh Balan, UH associate professor of biotechnology at the Cullen College of Engineering Technology Division; Aruna Weerasooriya, professor of medicinal plants at Prairie View A&M University; and Ram Ray, professor of agronomy at Prairie View A&M University.

The study examined microbiomes living in and around the roots (rhizosphere) and on the leaves (phyllosphere) of four types of hemp plants. The team at UH compared how these microorganisms differ between hemp grown for fiber and hemp grown for CBD production.

“In hemp, the microbiome is important in terms of optimizing the production of CBD and enhancing the quality of fiber,” Khan said in a news release. “This work explains how different genotypes of hemp harbor microbial communities to live inside and contribute to such processes. We showed how different types of hemp plants have their own special groups of tiny living microbes that help the plants grow and stay healthy.”

The study indicates that hemp cultivation can be improved by better understanding these distinct microbial communities, which impact growth, nutrient absorption, stress resilience, synthesis and more. This could help decrease the need for chemical inputs and allow growers to use more sustainable agricultural practices.

“Understanding these microorganisms can also lead to more sustainable farming methods, using nature to boost plant growth instead of relying heavily on chemicals,” Ahmad, the paper’s first author and doctoral student of Khan’s, said the news release.

Other findings in the study included higher fungal diversity in leaves and stems, higher bacterial diversity in roots and soil, and differing microbiome diversity. According to UH, CBD-rich varieties are currently in high demand for pharmaceutical products, and fiber-rich varieties are used in industrial applications like textiles.