The City of Houston is aiming to have Arco del Tiempo installed in 2024. Photo courtesy of The City of Houston

The City of Houston has unveiled the first look at the latest permanent public artwork that will be installed in the Second Ward in 2024. The sculpture is the first-ever environmentally sustainable art piece that will generate electricity for the nearby City-owned Latino multicultural performing arts theater.

Arco del Tiempo (Arch of Time) is a 100-foot tall arch designed by Berlin-based artist and architect Riccardo Mariano. Several years have been put into the making of this project, dating as far back as 2019. Mariano had entered the idea into a Land Art Generator Initiative (LAGI) design competition in the Houston sister-city of Abu Dhabi. From there, it was chosen to be developed full-scale and installed at Guadalupe Plaza Park.

According to a press release, the sculpture can measure time and cast beams of sunlight onto the ground, creating a connection between "the celestial and the terrestrial" through the geometry of the design.

The light beams are different based on the four seasons and the time of day, constantly shifting and responding to the latitude and longitude of the city from space. Mariano said that his sculpture is a "practical example" of how physical art can interact with the abstract, such as the Earth's movement around the sun.

"The apparent movement of the sun in the sky activates the space with light and colors and engages viewers who participate in the creation of the work by their presence," said Mariano. "Arco del Tiempo merges renewable energy generation with public space and into the everyday life of the Second Ward. Inspired by science and powered by renewable energy, the artwork is a bridge between art and technology and encourages educational purposes while improving public space. At night the space within the arch will be used as a stage for outdoor public events.”

"At night the space within the arch will be used as a stage for outdoor public events,” Riccardo Mariano said.Photo courtesy of The City of Houston

Arco del Tiempo will do more than just be an aesthetically pleasing sight for the community. Its meaningful, functional purpose will be to generate about 400,000 kilowatt-hours of electricity per year, and power the Talento Bilingüe de Houston. LAGI founding co-director Elizabeth Monoian said in the release the sculpture will generate over 12 million kilowatt-hours of power throughout its lifetime, which equals the removal of 8,500 metric tons of carbon dioxide from the atmosphere.

"Through the clean energy it produces, Arco del Tiempo will pay back its embodied carbon footprint," Monoian said. "In other words, all the energy that went into its making—from the smelting of the steel to the drilling that puts the final cladding into place—will be offset through the energy it generates. Beyond its break-even point, which we will track and celebrate with the community, the artwork will be a net-positive contributor to a healthy climate and the planet will be better off for its existence.”

In a statement, Houston Mayor Sylvester Turner praised the unique art piece as more than just a sculpture, but as a "monument to a new era of energy."

"The City of Houston has always stood at the vanguard of energy innovation and the Arco del Tiempo artwork stands in that tradition, highlighting Houston’s role as an art city and as global leader in the energy transition," Mayor Turner said. "We are inspired by the vision and creative thinking. Marrying clean energy, the built environment, and truly World Class art is Houston.”

------

This article originally ran on CultureMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University lands $18M to revolutionize lymphatic disease detection

fresh funding

An arm of the U.S. Department of Health and Human Services has awarded $18 million to scientists at Rice University for research that has the potential to revolutionize how lymphatic diseases are detected and help increase survivability.

The lymphatic system is the network of vessels all over the body that help eliminate waste, absorb fat and maintain fluid balance. Diseases in this system are often difficult to detect early due to the small size of the vessels and the invasiveness of biopsy testing. Though survival rates of lymph disease have skyrocketed in the United States over the last five years, it still claims around 200,000 people in the country annually.

Early detection of complex lymphatic anomalies (CLAs) and lymphedema is essential in increasing successful treatment rates. That’s where Rice University’s SynthX Center, directed by Han Xiao and Lei Li, an assistant professor of electrical and computer engineering, comes in.

Aided by researchers from Texas Children’s Hospital, Baylor College of Medicine, the University of Texas at Dallas and the University of Texas Southwestern Medical Center, the center is pioneering two technologies: the Visual Imaging System for Tracing and Analyzing Lymphatics with Photoacoustics (VISTA-LYMPH) and Digital Plasmonic Nanobubble Detection for Protein (DIAMOND-P).

Simply put, VISTA-LYMPH uses photoacoustic tomography (PAT), a combination of light and sound, to more accurately map the tiny vessels of the lymphatic system. The process is more effective than diagnostic tools that use only light or sound, independent of one another. The research award is through the Advanced Research Projects Agency for Health (ARPA-H) Lymphatic Imaging, Genomics and pHenotyping Technologies (LIGHT) program, part of the U.S. HHS, which saw the potential of VISTA-LYMPH in animal tests that produced finely detailed diagnostic maps.

“Thanks to ARPA-H’s award, we will build the most advanced PAT system to image the body’s lymphatic network with unprecedented resolution and speed, enabling earlier and more accurate diagnosis,” Li said in a news release.

Meanwhile, DIAMOND-P could replace the older, less exact immunoassay. It uses laser-heated vapors of plasmonic nanoparticles to detect viruses without having to separate or amplify, and at room temperature, greatly simplifying the process. This is an important part of greater diagnosis because even with VISTA-LYMPH’s greater imaging accuracy, many lymphatic diseases still do not appear. Detecting biological markers is still necessary.

According to Rice, the efforts will help address lymphatic disorders, including Gorham-Stout disease, kaposiform lymphangiomatosis and generalized lymphatic anomaly. They also could help manage conditions associated with lymphatic dysfunction, including cancer metastasis, cardiovascular disease and neurodegeneration.

“By validating VISTA-LYMPH and DIAMOND-P in both preclinical and clinical settings, the team aims to establish a comprehensive diagnostic pipeline for lymphatic diseases and potentially beyond,” Xiao added in the release.

The ARPA-H award funds the project for up to five years.

Houston doctor wins NIH grant to test virtual reality for ICU delirium

Virtual healing

Think of it like a reverse version of The Matrix. A person wakes up in a hospital bed and gets plugged into a virtual reality game world in order to heal.

While it may sound far-fetched, Dr. Hina Faisal, a Houston Methodist critical care specialist in the Department of Surgery, was recently awarded a $242,000 grant from the National Institute of Health to test the effects of VR games on patients coming out of major surgery in the intensive care unit (ICU).

The five-year study will focus on older patients using mental stimulation techniques to reduce incidences of delirium. The award comes courtesy of the National Institute on Aging K76 Paul B. Beeson Emerging Leaders Career Development Award in Aging.

“As the population of older adults continues to grow, the need for effective, scalable interventions to prevent postoperative complications like delirium is more important than ever,” Faisal said in a news release.

ICU delirium is a serious condition that can lead to major complications and even death. Roughly 87 percent of patients who undergo major surgery involving intubation will experience some form of delirium coming out of anesthesia. Causes can range from infection to drug reactions. While many cases are mild, prolonged ICU delirium may prevent a patient from following medical advice or even cause them to hurt themselves.

Using VR games to treat delirium is a rapidly emerging and exciting branch of medicine. Studies show that VR games can help promote mental activity, memory and cognitive function. However, the full benefits are currently unknown as studies have been hampered by small patient populations.

Faisal believes that half of all ICU delirium cases are preventable through VR treatment. Currently, a general lack of knowledge and resources has been holding back the advancement of the treatment.

Hopefully, the work of Faisal in one of the busiest medical cities in the world can alleviate that problem as she spends the next half-decade plugging patients into games to aid in their healing.