Patrick Lewis co-founded BBL Ventures that helps connect energy companies to startups that have innovative technology solutions for their pain points. Courtesy of Patrick Lewis

The energy industry is at an inflection point. In order to compete, oil and gas companies are really focusing on innovation and engaging startups. That's where Patrick Lewis comes in.

Lewis, co-founder of BBL Ventures, has been a tech investor in the Houston innovation ecosystem for about 25 years, and he started seeing an opportunity to help large companies identify their pain points and connect them with startups that have the technology to design solutions. He created BBL Ventures — and an accelerator for its portfolio companies, BBL Labs out of Station Houston — to become a matchmaker of sorts for big corporations and the startups that can help them stay competitive.

"At our core, we're an investment firm, but our mission statement is to be the innovation partner for the energy and natural resources industry," Lewis says on the fourth episode of the Houston Innovators Podcast.

The key element to BBL's model is the reverse-style pitch. Rather than hosting a pitch competition with a wide range of energy tech startups, BBL teamed up with ExxonMobil earlier this year and identified two specific robotics problems and called for startups to pitch solutions.

After the success of the reverse pitch, BBL hosted an Emerging Technology Symposium at The Cannon last month. The event brought together individuals on both sides of the table — the corporates and the startups — further bridging the gap between the two.

Lewis discusses BBL's past success and future plans, as well as what keeps him up at night as a tech investor in Houston on this week's podcast. Check it out below and subscribe wherever you get your podcasts.


ExxonMobil named two winners in its inaugural reverse pitch competition with BBL Ventures. Courtesy of OctoRD

ExxonMobil taps two new technologies in a Houston reverse pitch program

Problem solving

ExxonMobil and BBL Ventures have teamed up to flip the script on pitch competitions. Rather than have startups pitch themselves, the two companies collaborated on a reverse pitch event where Exxon identifies a few problems and search for companies that can build a solution.

The purpose of the event, says Tim Westhoven, technology scouting and venturing at ExxonMobil at the Baytown refinery, was to get the company out of its day-to-day to spark new ideas and innovation.

"Typically, as an engineer, when we think about how we solve a problem, we start inside the organization," Westhoven says at the event, which took place on Wednesday, June 5, at Station Houston. "Then we think about what problems we want to solve. Sometimes, you don't even think at all about what's available on the outside. This reverse pitch is us thinking about the impact we want to have and what the outside can offer."

In his experience, once an organization goes outside itself for solutions, they can find more options to choose from.

"As we cycle through and innovate on these things and find more and more outside solutions to a particular problem, we find the impact scales very quickly," Westhoven says.

The reverse pitch contest, which launched in March, asked for solutions to two problems ExxonMobil employees actually encounter. The first is regarding the opening process equipment, with the goal being to "create a method to stop exposure to flow or residual material," according to the website. The company needs a device that works remotely, thus reducing the risk of exposure and contact with the material for technicians.

The other problem ExxonMobil is looking to solve has to do with reducing arc flash that result in exposure to electrical charges. The company has "identified the promotion of personal safety as a priority action in addressing and reducing negative events on campuses globally," the website says. All the specifics for these two issues are available online.

For both problems, ExxonMobil wants AI and automation involved — and that's deliberate to minimize human involvement, which can lead to error.

"Human error causes 40 to 70 percent of those issues," Westhoven says. "This is why we are looking to robotics and automation to solve this problem."

Seven companies pitched during the evening, and two — one for each solution — were named winners. Here's what solutions stood out to the judges, potentially took home $60,000, and are up for a pilot program at ExxonMobil.

Opening Process Equipment: OctoRD

Courtesy of OctoRD

OctoRD's OPE solution includes using materials that are already available on the market to create a safer solution to the current process. In fact, Kevin Larsen, founder of Phoenix, Arizona-based OctoRD, even brought an early prototype to his pitch to demonstrate for the judges.

"My whole background has been taking technology, applying it to problems, and getting it into production and real life," he says.

OctoRD's product would take 90 days to get to market. It would allow for employees to open and close the device from up to 15 feet away, and, should an emergency occur, would have an automatic shutting feature. While the current model satisfies the requirements for the category, Larsen's pitch even included future ways to advance the tool.

Reducing Arc Flash: CBS ArcSafe

Courtesy of CBS ArcSafe

CBS ArcSafe, based in Denton, Texas, has been around for a while and knows how to increase worker safety using technology, says Justin Gaull, marketing manager for CBS ArcSafe. The company has designed over 700 tools for safety purposes.

"Our business is the business of safety, and decreasing arc flash hazards is our priority," he says to the crowd at the pitch event.

The company's solution would take 10 weeks or less to get from discovery to production to market. The technology includes a switchgear box, the Elliot 230-PM, that syncs with a remote that allows workers to operate well out of the arc flash zone — even up to 300 feet away with the wireless option. There would also be a video camera able to capture a view of the gauges so the operator can see them in real time.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers develop material to boost AI speed and cut energy use

ai research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.

Houston to become 'global leader in brain health' and more innovation news

Top Topics

Editor's note: The most-read Houston innovation news this month is centered around brain health, from the launch of Project Metis to Rice''s new Amyloid Mechanism and Disease Center. Here are the five most popular InnovationMap stories from December 1-15, 2025:

1. Houston institutions launch Project Metis to position region as global leader in brain health

The Rice Brain Institute, UTMB's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department will lead Project Metis. Photo via Unsplash.

Leaders in Houston's health care and innovation sectors have joined the Center for Houston’s Future to launch an initiative that aims to make the Greater Houston Area "the global leader of brain health." The multi-year Project Metis, named after the Greek goddess of wisdom and deep thought, will be led by the newly formed Rice Brain Institute, The University of Texas Medical Branch's Moody Brain Health Institute and Memorial Hermann’s comprehensive neurology care department. The initiative comes on the heels of Texas voters overwhelmingly approving a ballot measure to launch the $3 billion, state-funded Dementia Prevention and Research Institute of Texas (DPRIT). Continue reading.

2.Rice University researchers unveil new model that could sharpen MRI scans

New findings from a team of Rice University researchers could enhance MRI clarity. Photo via Unsplash.

Researchers at Rice University, in collaboration with Oak Ridge National Laboratory, have developed a new model that could lead to sharper imaging and safer diagnostics using magnetic resonance imaging, or MRI. In a study published in The Journal of Chemical Physics, the team of researchers showed how they used the Fokker-Planck equation to better understand how water molecules respond to contrast agents in a process known as “relaxation.” Continue reading.

3. Rice University launches new center to study roots of Alzheimer’s and Parkinson’s

The new Amyloid Mechanism and Disease Center will serve as the neuroscience branch of Rice’s Brain Institute. Photo via Unsplash.

Rice University has launched its new Amyloid Mechanism and Disease Center, which aims to uncover the molecular origins of Alzheimer’s, Parkinson’s and other amyloid-related diseases. The center will bring together Rice faculty in chemistry, biophysics, cell biology and biochemistry to study how protein aggregates called amyloids form, spread and harm brain cells. It will serve as the neuroscience branch of the Rice Brain Institute, which was also recently established. Continue reading.

4. Baylor center receives $10M NIH grant to continue rare disease research

BCM's Center for Precision Medicine Models has received funding that will allow it to study more complex diseases. Photo via Getty Images

Baylor College of Medicine’s Center for Precision Medicine Models has received a $10 million, five-year grant from the National Institutes of Health that will allow it to continue its work studying rare genetic diseases. The Center for Precision Medicine Models creates customized cell, fly and mouse models that mimic specific genetic variations found in patients, helping scientists to better understand how genetic changes cause disease and explore potential treatments. Continue reading.

5. Luxury transportation startup connects Houston with Austin and San Antonio

Shutto is a new option for Houston commuters. Photo courtesy of Shutto

Houston business and leisure travelers have a luxe new way to hop between Texas cities. Transportation startup Shutto has launched luxury van service connecting San Antonio, Austin, and Houston, offering travelers a comfortable alternative to flying or long-haul rideshare. Continue reading.

Texas falls to bottom of national list for AI-related job openings

jobs report

For all the hoopla over AI in the American workforce, Texas’ share of AI-related job openings falls short of every state except Pennsylvania and Florida.

A study by Unit4, a provider of cloud-based enterprise resource planning (ERP) software for businesses, puts Texas at No. 49 among the states with the highest share of AI-focused jobs. Just 9.39 percent of Texas job postings examined by Unit4 mentioned AI.

Behind Texas are No. 49 Pennsylvania (9.24 percent of jobs related to AI) and No. 50 Florida (9.04 percent). One spot ahead of Texas, at No. 47, is California (9.56 percent).

Unit4 notes that Texas’ and Florida’s low rankings show “AI hiring concentration isn’t necessarily tied to population size or GDP.”

“For years, California, Texas, and New York dominated tech hiring, but that’s changing fast. High living costs, remote work culture, and the democratization of AI tools mean smaller states can now compete,” Unit4 spokesperson Mark Baars said in a release.

The No. 1 state is Wyoming, where 20.38 percent of job openings were related to AI. The Cowboy State was followed by Vermont at No. 2 (20.34 percent) and Rhode Island at No. 3 (19.74 percent).

“A company in Wyoming can hire an AI engineer from anywhere, and startups in Vermont can build powerful AI systems without being based in Silicon Valley,” Baars added.

The study analyzed LinkedIn job postings across all 50 states to determine which ones were leading in AI employment. Unit4 came up with percentages by dividing the total number of job postings in a state by the total number of AI-related job postings.

Experts suggest that while states like Texas, California and Florida “have a vast number of total job postings, the sheer volume of non-AI jobs dilutes their AI concentration ratio,” according to Unit4. “Moreover, many major tech firms headquartered in California are outsourcing AI roles to smaller, more affordable markets, creating a redistribution of AI employment opportunities.”