Halliburton Labs has announced the addition of three clean energy tech companies. Photo courtesy of Halliburton

Halliburton has again added a handful of energy tech startups to its Houston-based incubator.

Three companies — Matrix Sensors, Renew Power Systems, and SunGreenH2 — have joined Halliburton Labs as its newest clean energy participants.

“Companies across the energy landscape are interested in scalable innovations that improve the cost, reliability, and sustainability of energy,” says Managing Director Dale Winger in the news release. “Our tailored program combines expert support, access to a global network, and the physical resources for participants to scale. We’re excited to help these companies accelerate their market traction.”

Halliburton, a provider of energy equipment and services, launched Halliburton Labs in 2020. Last September was the incubator's last cohort addition. The next Halliburton Labs Finalists Pitch Day is Friday, January 27, at the Ion. The event will include pitches from 10 innovative, early-stage energy tech companies. Registration is open for the event.

Here are details, according to Halliburton, about the three new startups at the incubator.

Matrix Sensors

Using a new class of gas-adsorbing materials known as metal-organic frameworks to develop the world’s first quantitative gas sensor on a chip, Matrix Sensors has created a touch-free technology that enables advancements in sensor size, power, cost, and performance to address limitations of current gas sensor technologies, which require manual calibration every six months. The company is based in San Diego, California.

“With Halliburton’s global reach, we can apply our technology to some of the biggest problems facing the energy sector today, including CO2 sensors for energy efficient buildings and methane sensors for leak detection,” says Matrix Sensors CEO Steve Yamamoto in the release.

Renew Power Systems

RPSi, based in Minneapolis, Minnesota, is a clean-tech company that develops hardware and software solutions that enable flexible and sustainable grid infrastructure. RPSi uses power electronics to connect renewable energy resources, such as wind and solar, with each other and the grid.

“Our mission is to help change the way the world generates and distributes energy,” says CEO Zach Emond in the release. “With RPSi technology, a diverse range of domestic and global communities will benefit from the acceleration of renewable energy resources that work with new and existing grid infrastructure and improve access to affordable, sustainable, and resilient electricity.”

SunGreenH2

Singapore-based SunGreenH2 builds high-performance hardware for electrolyzer cells, stacks, and systems that increase hydrogen production, decrease energy use, and reduce platinum group metals use. The company supplies hardware components for alkaline and proton-exchange membrane electrolyzers. Its modular, high-efficiency anion exchange membrane (AEM) electrolyzer stack, which is being commercialized, uses renewable power to produce low-cost green hydrogen for industries, transport, and energy storage.

“We are excited to unlock the future of green hydrogen production. With the help of Halliburton’s engineering and manufacturing expertise, we plan to commercialize and roll out our product in major international markets,” says Tulika Raj, co-founder and CEO of the company, in the release.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston robotics co. unveils new robot that can handle extreme temperatures

Hot New Robot

Houston- and Boston-based Square Robot Inc.'s newest tank inspection robot is commercially available and certified to operate at extreme temperatures.

The new robot, known as the SR-3HT, can operate from 14°F to 131°F, representing a broader temperature range than previous models in the company's portfolio. According to the company, its previous temperature range reached 32°F to 104°F.

The new robot has received the NEC/CEC Class I Division 2 (C1D2) certification from FM Approvals, allowing it to operate safely in hazardous locations and to perform on-stream inspections of aboveground storage tanks containing products stored at elevated temperatures.

“Our engineering team developed the SR-3HT in response to significant client demand in both the U.S. and international markets. We frequently encounter higher temperatures due to both elevated process temperatures and high ambient temperatures, especially in the hotter regions of the world, such as the Middle East," David Lamont, CEO of Square Robot, said in a news release. "The SR-3HT employs both active and passive cooling technology, greatly expanding our operating envelope. A great job done (again) by our engineers delivering world-leading technology in record time.”

The company's SR-3 submersible robot and Side Launcher received certifications earlier this year. They became commercially available in 2023, after completing initial milestone testing in partnership with ExxonMobil, according to Square Robot.

The company closed a $13 million series B round in December, which it said it would put toward international expansion in Europe and the Middle East.

Square Robot launched its Houston office in 2019. Its autonomous, submersible robots are used for storage tank inspections and eliminate the need for humans to enter dangerous and toxic environments.

---

This article originally appeared on EnergyCapitalHTX.com.

Houston's Ion District to expand with new research and tech space, The Arc

coming soon

Houston's Ion District is set to expand with the addition of a nearly 200,000-square-foot research and technology facility, The Arc at the Ion District.

Rice Real Estate Company and Lincoln Property Company are expected to break ground on the state-of-the-art facility in Q2 2026 with a completion target set for Q1 2028, according to a news release.

Rice University, the new facility's lead tenant, will occupy almost 30,000 square feet of office and lab space in The Arc, which will share a plaza with the Ion and is intended to "extend the district’s success as a hub for innovative ideas and collaboration." Rice research at The Arc will focus on energy, artificial intelligence, data science, robotics and computational engineering, according to the release.

“The Arc will offer Rice the opportunity to deepen its commitment to fostering world-changing innovation by bringing our leading minds and breakthrough discoveries into direct engagement with Houston’s thriving entrepreneurial ecosystem,” Rice President Reginald DesRoches said in the release. “Working side by side with industry experts and actual end users at the Ion District uniquely positions our faculty and students to form partnerships and collaborations that might not be possible elsewhere.”

Developers of the project are targeting LEED Gold certification by incorporating smart building automation and energy-saving features into The Arc's design. Tenants will have the opportunity to lease flexible floor plans ranging from 28,000 to 31,000 square feet with 15-foot-high ceilings. The property will also feature a gym, an amenity lounge, conference and meeting spaces, outdoor plazas, underground parking and on-site retail and dining.

Preleasing has begun for organizations interested in joining Rice in the building.

“The Arc at the Ion District will be more than a building—it will be a catalyst for the partnerships, innovations and discoveries that will define Houston’s future in science and technology,” Ken Jett, president of Rice Real Estate Company, added in the release. “By expanding our urban innovation ecosystem, The Arc will attract leading organizations and talent to Houston, further strengthening our city’s position as a hub for scientific and entrepreneurial progress.”

Intel Corp. and Rice University sign research access agreement

innovation access

Rice University’s Office of Technology Transfer has signed a subscription agreement with California-based Intel Corp., giving the global company access to Rice’s research portfolio and the opportunity to license select patented innovations.

“By partnering with Intel, we are creating opportunities for our research to make a tangible impact in the technology sector,” Patricia Stepp, assistant vice president for technology transfer, said in a news release.

Intel will pay Rice an annual subscription fee to secure the option to evaluate specified Rice-patented technologies, according to the agreement. If Intel chooses to exercise its option rights, it can obtain a license for each selected technology at a fee.

Rice has been a hub for innovation and technology with initiatives like the Rice Biotech Launch Pad, an accelerator focused on expediting the translation of the university’s health and medical technology; RBL LLC, a biotech venture studio in the Texas Medical Center’s Helix Park dedicated to commercializing lifesaving medical technologies from the Launch Pad; and Rice Nexus, an AI-focused "innovation factory" at the Ion.

The university has also inked partnerships with other tech giants in recent months. Rice's OpenStax, a provider of affordable instructional technologies and one of the world’s largest publishers of open educational resources, partnered with Microsoft this summer. Google Public Sector has also teamed up with Rice to launch the Rice AI Venture Accelerator, or RAVA.

“This agreement exemplifies Rice University’s dedication to fostering innovation and accelerating the commercialization of groundbreaking research,” Stepp added in the news release.