Pete O'Heeron leads FibroBiologics as CEO and chairman. Photo via Fibrobiologics.com

Living with chronic disease has shaped my life in profound ways. My journey began in 5th grade when I was diagnosed with Scheuermann’s disease, a degenerative disc condition that kept me sidelined for an entire year. Later, I was diagnosed with hereditary neuropathy with liability to pressure palsies (HNPP), a condition that significantly impacts nerve recovery. These experiences didn’t just challenge me physically, they reshaped my perspective on healthcare — and ultimately set me on my path to entrepreneurship. What started as personal health struggles evolved into a mission to transform patient care through innovative biotechnology.

A defining part of living with these conditions was the diagnostic process. I underwent nerve tests that involved electrical shocks to my hands and arms — without anesthesia — to measure nerve activity. The pain was intense, and each test left me thinking: There has to be a better way. Even in those difficult moments, I found myself thinking about how to improve the tools and processes used in healthcare.

HNPP, in particular, has been a frustrating condition. For most people, sleeping on an arm might cause temporary numbness that disappears in an hour. For me, that same numbness can last six months. Even more debilitating is the loss of strength and fine motor skills. Living with this reality forced me to take an active role in understanding my health and seeking solutions, a mindset that would later shape my approach to leadership.

Growing up in Houston, I was surrounded by innovation. My grandfather, a pioneering urologist, was among the first to introduce kidney dialysis in the city in the 1950s. His dedication to advancing patient care initially inspired me to pursue medicine. Though my path eventually led me to healthcare administration and eventually biotech, his influence instilled in me a lifelong commitment to medicine and making a difference.

Houston’s thriving medical and entrepreneurial ecosystems played a critical role in my journey. The city’s culture of innovation and collaboration provided opportunities to explore solutions to unmet medical needs. When I transitioned from healthcare administration to founding biotech companies, I drew on the same resilience I had developed while managing my own health challenges.

My experience with chronic disease also shaped my leadership philosophy. Rather than accepting diagnoses passively, I took a proactive approach questioning assumptions, collaborating with experts, and seeking new solutions. These same principles now guide decision-making at FibroBiologics, where we are committed to developing groundbreaking therapies that go beyond symptom management to address the root causes of disease.

The resilience I built through my health struggles has been invaluable in navigating business challenges. While my early career in healthcare administration provided industry insights, launching and leading companies required the same determination I had relied on in my personal health journey.

I believe the future of healthcare lies in curative treatments, not just symptom management. Fibroblast cells hold the promise of engaging the body’s own healing processes — the most powerful cure for chronic diseases. Cell therapy represents both a scientific breakthrough and a significant business opportunity, one that has the potential to improve patient outcomes while reducing long-term healthcare costs.

Innovation in medicine isn’t just about technology; it’s about reimagining what’s possible. The future of healthcare is being written today. At FibroBiologics, our mission is driven by more than just financial success. We are focused on making a meaningful impact on patients’ lives, and this purpose-driven approach helps attract talent, engage stakeholders, and differentiate in the marketplace. Aligning business goals with patient needs isn’t just the right thing to do, it’s a powerful model for sustainable growth and lasting innovation in biotech.

---

Pete O’Heeron is the CEO and founder of FibroBiologics, a Houston-based regenerative medicine company.


FibroBiologics has opened a new 10,000-square-foot Houston lab to scale up research efforts and pave the way for in-house manufacturing. Photo via Fibrobiologics.com

Houston regenerative medicine company expands lab for future trials

new digs

A Houston regenerative medicine company has unveiled new laboratory space with the goal of expanding its pioneering science.

FibroBiologics uses fibroblasts, the body’s most common type of cell, rather than stem cells, to help grow new cells. Fibroblasts are the primary variety of cells that compose connective tissue. FibroBiologics has found in studies that fibroblasts can be even more powerful than stem cells when it comes to both regeneration and immune modulation, meaning they could be a more versatile way forward in those fields.

In 2023, FibroBiologics moved into new lab space in the UH Technology Bridge. Now, with its new space, the publicly traded company, which has more than 240 patents issued or pending, will be even better equipped to power forward with its research.

The new space includes more than 10,000 square feet of space devoted to both labs and offices. The location is large enough to also house manufacturing drug product candidates that will be used in upcoming trials. Additionally, the company reports that it plans to hire additional researchers to help staff the facility.

“This expansion marks a transformative step forward for our company and our mission,” Pete O’Heeron, FibroBiologics founder and CEO, said in a news release. “By significantly increasing the size of our lab, we are creating the space and infrastructure needed to foster greater innovation and accelerate scientific breakthroughs.”

The streamlined, in-house manufacturing process will reduce the company’s reliance on external partners and make the supply chain simpler, O’Heeron added in the release.

Hamid Khoja, the chief scientific officer for FibroBiologics, also chimed in.

“To date, our progress in developing potentially transformative therapeutic candidates for chronic diseases using fibroblasts has been remarkable,” he added in the release. “This new laboratory facility will enable further expansion and acceleration of our research and development efforts. Additionally, the expansive new space will enable us to bring in-house currently outsourced projects, expand our science team and further contribute to the increased efficiency of our R&D efforts.”

This news arrives shortly after a milestone for the company in its research about neurodegenerative disease. Last month, fibroblast treatments in an animal model study demonstrated a notable regeneration of the myelin sheath, the layer that insulates nerves and is worn down by disease.

“Confirming remyelination in a second validated animal model is an important step in our research and development efforts, offering fresh hope for patients with demyelinating diseases, including multiple sclerosis,” O’Heeron added in a separate release. “These findings advance our mission to develop transformative fibroblast-based therapies that address the root causes of chronic disease, not just their symptoms, and reflect our dedication to pushing the frontiers of regenerative medicine."

The event spotlighted the organization’s strides in regenerative medicine, fueling advancements in adult stem cell therapies for conditions often deemed incurable, such as Parkinson’s Disease, multiple sclerosis, and spinal cord injuries. Photo via Si Vo

Houston gala attendees prescribe $1M for groundbreaking stem cell research

breaking boundaries

There’s a new gala in H-town, folks, and it made its grand, sold-out debut thanks to a power couple known for believing that the sky's the limit when it comes to local philanthropy. Chairs Jessica Rossman and Gordon Bethune piloted the inaugural Hope Biosciences Research Foundation (HBRF) fundraiser on October 26 at the Post Oak Hotel in Uptown Houston.

The event spotlighted the organization’s strides in regenerative medicine, fueling advancements in adult stem cell therapies for conditions often deemed incurable, such as Parkinson’s Disease, multiple sclerosis, and spinal cord injuries.

The evening offered patrons a deeper look into the group’s pioneering work, led by co-founders Donna and Daniel Chang. More than 400 supporters — many of whom have witnessed the impact of HBRF’s clinical trials on their health and the lives of loved ones — were enticed to partake in the event by a host committee helmed by Donae, Bella, and Rob Chramosta.

Sherry Diers and David Gonzales, hosts of the foundation’s Hopeful News Network podcast, shared heartfelt stories from their hands-on experiences with HBRF patients. In a touching moment, high school senior Bella Chramosta recounted her own health journey before announcing the inaugural HBRF Luminary Award recipients — Ema Suljkanovic, Rachel Phillips, and Alayna Nunez. The three Kingwood High School students had raised $1,400 for the foundation, and Houston icon Jim “Mattress Mack” McIngvale proudly presented the award.

HBRF offered a Hope-inspired jewelry pull, sponsored by Thomas Markle Jewelers. Each silver necklace entry doubled as a ticket for a chance to win a diamond version of the necklace — 2.27 carats in 18kt white gold, valued at $7,500. The winning ticket, drawn by Sarah and Phillip Markle, brought cheers from those who purchased necklaces throughout the evening. Guests enjoyed a silent auction chaired by Cathy Jackson, featuring everything from health and beauty experiences to travel packages like golfing at St. Andrews and fishing in Cabo.

Gala-goers were treated to a meaningful musical performance by Faith and Jon Hartlage. Upon departure, each guest received a gift from Hope Biosciences, LLC — a tube of Wondercell gel, an anti-aging product made from stem cell byproducts, as a reminder of the foundation’s impact both inside and outside the lab.

Seen on the scene were Ginger and Dick Hite, Maria and Omar Alaoui, Roslyn Bazzelle Mitchell, Cheryl Byington, Gracie and Bob Cavnar, Anna Dean, Karen and Peter Remington, Dr. Romy Dell’Ario, Jan Duncan, Nene Foxhall, Mandy Kao, Stacey Lindseth, Linda McIngvale, Beth Muecke, Patti Murphy, Jennifer Pinkerton, Rachel and Tom Regan, Dallas Rowdan, Ally Shell, Natalie Wall, Christina Zhou, Tama Lundquist and Dr. Peter Farrell, Stephanie and Gary Loveless, Azeemeh Zaheer, Chris Perry, Gregg Harrison, and Dr. Roland Maldonado.

------

This article originally ran on CultureMap.

FibroBiologics will IPO this week. Photo via Getty Images

Houston regenerative medicine company to IPO, move toward more human trials

ready to list

Want a piece of one of Houston’s most promising biotech companies? On January 31, FibroBiologics will begin the trading of its common stock on the Nasdaq stock exchange.

While most labs in the realm of regenerative medicine are focused on stem cells, FibroBiologics has bet on fibroblasts as the secret to treating myriad ailments. Fibroblasts, the most common type of cell in the body, are the primary cells that compose connective tissue.

Interested investors can find a prospectus to peruse before taking the leap. FibroBiologics filed with the U.S. Securities & Exchange Commission (SEC) on November 7, 2023. In September, FibroBiologics CEO Pete O’Heeron told InnovationMap, “I think what we're going to see is that fibroblasts are going to end up winning... They're just a better overall cell than the stem cells.”

O’Heeron was first exposed to the possibilities of fibroblasts as a means of regrowing discs in the spine. Since starting the company in 2008 as SpinalCyte, O’Heeron and FibroBiologics have organically written and filed more than 320 patents. Potential treatments go far beyond spinal surgery to include wound care, cancer, and multiple sclerosis.

According to O’Heeron, the goal in going public is to raise capital for human trials.

“We’ve had really fantastic results with animals and now we’re ready for humans,” he explained in September. “We've done small human trials, but we haven't done the large ones that are going to get the commercialization approval from the FDA.”

FibroBiologics is growing with impressive speed. O’Heeron told us that he is hiring as quickly as he is able to find qualified scientists with the expertise to do the one-of-a-kind work required. The company opened a new lab last fall at the UH Technology Bridge, Newlin-Linscomb Lab for Cell Therapies. With its new status as a publicly traded company, FibroBiologics is primed to break even more ground.

FibroBiologics is opening a unique new lab at the University of Houston's Technology Bridge. Photo by Natalie Harms/InnovationMap

Houston regenerative medicine company opens new lab at UH

cell therapy innovation

Pete O’Heeron wants you to know that “Bohemian Rhapsody” was originally released as a B-side. What does this nugget about Queen have to do with regenerative medicine? For O’Heeron and his company, FibroBiologics, it means everything.

That’s because most scientists consider stem cells the A-side when it comes to the race to curing disease. But FibroBiologics has set its sights on fibroblasts. The most common cell in the body, fibroblasts are the main cell type in connective tissue.

“Everyone was betting on stem cells, and we started betting on fibroblasts,” says O’Heeron, who started the company in 2008 as SpinalCyte. “I think what we're going to see is that fibroblasts are going to end up winning, there are more robust, more that are lower cost cell, they have higher therapeutic values, higher immune modulation. They're just a better overall cell than the than the stem cells.”

Since a neurosurgeon and a dermatologist first introduced O’Heeron to the idea of using fibroblasts to regrow discs in the spine, the company has expanded its reach to include promising treatments for multiple sclerosis and cancer and in wound care. Imagine a world where doctors lay fibroblasts directly onto surgical incisions after surgery, cutting the time for healing in half.

FibroBiologics has organically written and filed more than 320 patents.

“It's quite a unique situation. I don’t think that in other areas of science that you have such a wide open area to go out and patent. It's just it was a brand new area nobody had been working on,” O’Heeron explains.

And soon, investors will be able to own a stake in the impressive work being forged in Houston. FibroBiologics, previously FibroGenesis, was formed in order to go public in a direct NASDAQ listing. The goal is to access the capital necessary to go to human trials. Earlier this year, the company also launched a crowdfunding campaign.

“We’ve had really fantastic results with animals and now we’re ready for humans,” says O’Heeron. “We've done small human trials, but we haven't done the large ones that are going to get the commercialization approval from the FDA.”

With that in mind, the company just signed a deal with University of Houston’s Innovation Center. On Thursday, September 7, FibroBiologics will dedicate the Newlin-Linscomb Lab for Cell Therapies in the UH Technology Bridge. The new lab is named for former player and color commentator for the Houston Rockets, Mike Newlin and his wife, Cindy, as well as Pam and Dan Linscomb, a founding partner of Kuhl-Linscomb, one of the largest wealth management companies in Houston.

Other big local names newly attached to the company are astronaut Kate Rubins and Elizabeth Shpall, the director of the cell therapy laboratory at MD Anderson Cancer Center. Both have joined FibroBiologics as members of its scientific advisory board.

To fill the lab, O’Heeron says that he is adding to his team as quickly as he is able. The barrier is the fact that there are few, if any people in the world with the exact qualifications he’s seeking.

“Anytime you're breaking new scientific ground, you can't really just go out and recruit someone with that background because it really doesn't exist,” he says. But he is willing to teach and challenge scientists who are the right fit, and is hoping to expand the team in the new lab.

But like Queen did in 1975, FibroBiologics is pioneering a category of its own. And that’s something worth betting on.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston team develops innovative soft skeleton for kids with cerebral palsy

health tech

A team from the NSF University of Houston Building Reliable Advances and Innovation in Neurotechnology (UH BRAIN) Center and TIRR Memorial Hermann has introduced the MyoStep soft exoskeleton for children with cerebral palsy, according to a news release from UH.

The soft skeleton aims to address motor impairments caused by cerebral palsy that impact children’s ability to participate in physical activities, self-care and academics.

“The MyoStep project represents a significant advancement in the field of pediatric mobility aids, particularly for children with cerebral palsy,” Jose Luis Contreras-Vidal, director of UH BRAIN and the Hugh Roy and Lillie Cranz Cullen Distinguished Professor of Electrical and Computer Engineering, said in a news release.

The next-generation lightweight, soft exoskeleton was funded by the IEEE Electron Devices Society (EDS) Award.

The MyoStep is made to be lightweight and discreetly fit under clothes. It includes a wireless sensor network embedded inside the smart and flexible fabrics that is the backbone of the suit and collects and sends real-time data about the user’s movements It also includes safety features with temperature monitoring and emergency shut-off mechanisms.

“By integrating cutting-edge technologies such as artificial muscles, smart fabrics, and a comprehensive sensor network, MyoStep offers a promising solution to the challenges faced by existing exoskeletons,” Contreras-Vidal said in a news release.

Cerebral palsy is a neurological disorder that impacts motor skills. It occurs in one to four out of every 1,000 births worldwide.

“What makes the MyoStep project so compelling is that it’s not just about the technology: it’s about restoring confidence, function, and hope,” Dr. Gerard Francisco, a clinical partner on the technology, The Wulfe Family Chair of Physical Medicine and Rehabilitation at UTHealth Houston and medical officer at TIRR Memorial Hermann, said in a news release. “This kind of innovation has the potential to dramatically improve quality of life, helping children move through the world with greater ease and dignity.”

Houston universities launch summer 2025 accelerators for student ventures

summer session

OwlSpark, a startup and small business accelerator for Rice University-affiliated ventures, has named the latest 11 companies to its program that focus on challenges across technology, health care, consumer products and other sectors. The program is hosted in tandem with the University of Houston’s RED Labs and will take place at the Ion.

The early-stage accelerator runs for 12 weeks and culminates at The Bayou Startup Showcase on July 31.

According to a news release from Rice, “the accelerator cultivates a vibrant environment where founders are empowered to build, test, and scale their ideas in a setting built for entrepreneurship.”

The program is divided into two tracks: one for high-growth tech startups and another for small businesses.

The latest OwlSpark class includes:

  • Web and mobile platform EasilyBEE, which boosts family and community engagement in K-12 schools
  • Diagnos, a wearable-integrated wellness platform that monitors health and prevents injuries in college athletes
  • Johnnie, an AI-powered records management software for rural and midsize first responder agencies
  • JustKindHumility, which offers faith-based travel journals
  • Klix, whichautomates early-stage clinical trial management from document screening to AI-driven patient outreach and eligibility checks
  • Lizzy’s Gourmet Gains, which offers high-protein, flavor-forward dips and dressings
  • NextStep, an AI-powered multilingual assistant helping underserved communities navigate resources for health care
  • A catheter-integrated sensor device PeriShield, which detects early infection in peritoneal dialysis patients
  • Right Design, which connects creatives with vetted employers, mentors and projects via job matching and commissions
  • UCoreAlly, which provides business support for biotech startups in marketing, business development, customer support, human resources and accounting
  • Ultrasound-based ablation system VentriTech that treats ventricular arrhythmias

The Owl Spark accelerator has supported 229 founders and launched 104 ventures with participants raising more than $116 million in funding since 2013, according to Rice.

UH also shared the 9 teams that will participate in RED Labs' latest cohort.

The latest RED Labs class includes:

  • BLEED, an art agency that helps artists commercialize their work by connecting art collectors to original artwork and artists
  • Brain Haven, which is developing nasal inhalers designed to stimulate the emotional and memory processing centers to preserve neuroplasticity and delay cognitive decline
  • Candi Wands Automated Cotton Candy, which has developed a continuously operating cotton candy machine to help entertainment venues boost passive revenue
  • ChériCollectible, a series of in-person events where Gen Z and collectors can buy, sell, and trade modern collectibles
  • JobRadar, a job board that uses AI to analyze and categorize positions in real-time and then apply candidates instantly
  • Stage Select LLC, a supplementary talent booking service that partners with multi-stage venues to help fill gaps in programming and increase profitability by finding and booking local talent for their "second stage."
  • P-LEGS, a pediatric lower-limb exoskeleton that reduces physical strain on therapists while delivering customizable gait training.
  • Roll ‘N’ Reel Photo Booth, an interactive event-based equipment rental business
  • Stayzy, which automates guest communication and handles maintenance issues with an AI-powered software for short-term rental companies that manage 20-plus rentals