Here's what experiments TRISH is launching aboard Axiom Space's next mission. Photo via NASA

Houston's Translational Research Institute for Space Health, or TRISH, will launch six more experiments into space this spring aboard Axiom Space's Ax-2 mission, the organization announced this week.

The biomedical research conducted through TRISH, in consortium with CalTeach and MIT, will look into how space travel impacts everything from motion sickness to memory over the course of the mission's 10-day stint on the International Space Station.

The crew will consist of four astronauts: Commander Peggy Whitson (previously with NASA), Pilot John Shoffner and Mission Specialists Ali AlQarni and Rayyanah Barnawi. It's a historic team, bringing the first female private space crew commander and the first Saudi astronauts to the ISS.

“Insights gathered from this work improve our understanding of how the human body and mind respond to spaceflight, helping us to prepare future astronauts to remain safe and healthy during longer-duration missions," Dr. Dorit Donoviel, TRISH executive director and professor in the Center for Space Medicine at Baylor College of Medicine, says in a statement.

The six projects onboard the mission have been developed by researchers within TRISH as well as the University of Pennsylvania Perelman School of Medicine, Johns Hopkins University and Baylor College of Medicine. They aim to assess the following:

  • Spaceflight participants’ performance in memory, abstraction, spatial orientation, emotion recognition, risk decision making and sustained attention before and after the mission -Astronauts’ inner ears and eyes' response to motion before and after space travel and how this relates to motion sickness and nausea during launch and landing
  • The effects of spaceflight on the human body at the genomic level
  • Changes to the eyes and brain during spaceflight
  • Astronaut's sleep, personality, health history, team dynamics and immune-related symptoms
  • Sensorimotor abilities and changes in space and how this can impact astronauts' ability to stand, balance and have full body control on the moon

Some of this information will become part of TRISH’s Enhancing eXploration Platforms and ANalog Definition, or EXPAND, program, which aims to boost human health on commercial space flights through its database. The program launched in 2021.

Ax-2 is Axiom's second all-private astronaut mission to the ISS and will launch out of NASA’s Kennedy Space Center in Florida aboard a SpaceX's Dragon spacecraft. Axiom was first established in 2016 with the goal of building the world's first commercial space station.

TRISH is also slated to launch nine experiments on board SpaceX's Polaris Dawn mission, which is now expected to launch this summer. The research aboard Polaris Dawn is intended to complement research supported by TRISH on the Inspiration4 all-civilian mission to orbit, which was also operated by SpaceX in 2021.

Axiom Space has announced its crew for its second commercial space launch. Image via Axiom

Houston space company announces historic flight crew

ready for liftoff

A Houston-based company is making history with its next commercial flight mission.

Axiom Space announced that Axiom Mission 2, or Ax-2, the second all-private mission to the International Space Station, will have members of the Kingdom of Saudi Arabia's national astronaut program aboard. It will also be the first private mission commanded by a woman: Peggy Whitson, Axiom's director of human spaceflight and former NASA astronaut.

“Axiom Space’s second private astronaut mission to the International Space Station cements our mission of expanding access to space worldwide and supporting the growth of the low-Earth orbit economy as we build Axiom Station,” says Michael Suffredini, president and CEO of Axiom Space, in a news release. “Ax-2 moves Axiom Space one step closer toward the realization of a commercial space station in low-Earth orbit and enables us to build on the legacy and achievements of the ISS, leveraging the benefits of microgravity to better life on Earth.”

Expected to launch this spring, it's the second ISS mission for the commercial aerospace company founded in 2016. Ax-2 Mission Specialists Ali Alqarni and Rayyanah Barnawi will be the first Saudi astronauts to visit the ISS after Axiom and the Kingdom of Saudi Arabia reached an agreement in 2022. With this mission, KSA will become only the sixth country to have two astronauts working on the ISS at the same time.

“This flight is an integral milestone of a comprehensive program aiming to train and qualify experienced Saudis to undertake human spaceflight, conduct scientific experiments, participate in international research, and future space-related missions contributing to the Kingdom’s Vision 2030,” reads a statement from the country.

Pilot John Shoffner, a businessman and aviator from Knoxville, Tennessee, with over 8,500 hours of flying under his belt, is the crew's fourth and final member.

A SpaceX Falcon 9 rocket will launch the Ax-2 crew aboard a SpaceX Dragon spacecraft to the ISS from NASA’s Kennedy Space Center in Florida, and they will spend 10 days on the mission. The mission is targeted for launch in the spring of 2023, and will be the first private space mission to include both private astronauts and astronauts representing foreign governments.

Whitson, a Rice university alum, will add to her deep resume, which also includes adding even more space time to the standing record for the longest cumulative time of any astronaut in the history of the U.S. space program.

“I am honored and excited to lead the Ax-2 crew and mission,” Whitson says in a statement. “The space station is a vital platform for all types of research. We at Axiom Space are committed to working with NASA to open the door for private citizens to contribute to and advance the groundbreaking research aboard the station, forging the path for us to operate, live and work abroad Axiom Station.”

Axiom aims to build its own commercial space station to launch in late 2025. Axiom’s first mission completed last April, and the company, deemed a unicorn with a $1 billion valuation, has raised $200 million, including a $130 million series B round in 2021.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston climatetech startup raises $21.5M series A to grow robotics solution

seeing green

A Houston energy tech startup has raised a $21.5 million series a round of funding to support the advancement of its automated technology that converts field wastes into stable carbon.

Applied Carbon, previously known as Climate Robotics, announced that its fresh round of funding was led by TO VC, with participation from Congruent Ventures, Grantham Foundation, Microsoft Climate Innovation Fund, S2G Ventures, Overture.vc, Wireframe Ventures, Autodesk Foundation, Anglo American, Susquehanna Foundation, US Endowment for Forestry and Communities, TELUS Pollinator Fund for Good, and Elemental Excelerator.

The series A funding will support the deployment of its biochar machines across Texas, Oklahoma, Arkansas, and Louisiana.

"Multiple independent studies indicate that converting crop waste into biochar has the potential to remove gigatons of CO2 from the atmosphere each year, while creating trillions of dollars in value for the world's farmers," Jason Aramburu, co-founder and CEO of Applied Carbon, says in a news release. "However, there is no commercially available technology to convert these wastes at low cost.

"Applied Carbon's patented in-field biochar production system is the first solution that can convert crop waste into biochar at a scale and a cost that makes sense for broad acre farming," he continues.

Applied Carbon rebranded in June shortly after being named a top 20 finalist in XPRIZE's four-year, $100 million global Carbon Removal Competition. The company also was named a semi-finalist and awarded $50,000 from the Department of Energy's Carbon Dioxide Removal Purchase Pilot Prize program in May.

"Up to one-third of excess CO2 that has accumulated in the atmosphere since the start of human civilization has come from humans disturbing soil through agriculture," Joshua Phitoussi, co-founder and managing partner at TO VC, adds. "To reach our net-zero objectives, we need to put that carbon back where it belongs.

"Biochar is unique in its potential to do so at a permanence and price point that are conducive to mass-scale adoption of carbon dioxide removal solutions, while also leaving farmers and consumers better off thanks to better soil health and nutrition," he continues. "Thanks to its technology and business model, Applied Carbon is the only company that turns that potential into reality."

The company's robotic technology works in field, picking up agricultural crop residue following harvesting and converts it into biochar in a single pass. The benefits included increasing soil health, improving agronomic productivity, and reducing lime and fertilizer requirements, while also providing a carbon removal and storage solution.

"We've been looking at the biochar sector for over a decade and Applied Carbon's in-field proposition is incredibly compelling," adds Joshua Posamentier, co-founder and managing partner of Congruent Ventures. "The two most exciting things about this approach are that it profitably swings the agricultural sector from carbon positive to carbon negative and that it can get to world-scale impact, on a meaningful timeline, while saving farmers money."

------

This article originally ran on EnergyCapital.

Rice University makes top 5 lists of best biz schools in the country

top ranking

MBA programs at Rice University’s Jones Graduate School of Business have landed two top five rankings in The Princeton Review’s annual list of the country’s best business schools.

Rice earned a No. 4 ranking for its online MBA program and a No. 5 ranking for its MBA program in finance.

“These rankings are indicative of the high-quality education offered through all of our MBA programs. Students studying finance at Rice … are taught by faculty whose research and expertise enhances core classes and hard skills, so students are not just prepared to be successful in their careers, but they are also prepared to think critically about their roles and to lead in their industry,” Peter Rodriguez, dean of the Jones Graduate School of Business, says in a news release.

“These rankings are also indicative of our broader approach: offering students flexibility in their pursuit of an MBA, while retaining the experience of studying with world-class faculty — no matter what program they choose,” Rodriguez adds.

Rice also achieved high rankings in two other MBA categories: No. 8 for “greatest resources for women” and No. 10 for “greatest resources for minority students.”

The Princeton Review’s 2024 business school rankings are based on data from surveys of administrators at more than 400 business schools as well as surveys of 32,200 students enrolled in the schools’ MBA programs.

“The schools that made our list for 2024 all have impressive individual distinctions,” Rob Franek, The Princeton Review’s editor-in-chief, says in a news release. “What they share are three characteristics that broadly informed our criteria for these rankings: outstanding academics, robust experiential learning components and excellent career services.”

Rice also ranks as the top school for graduate entrepreneurship programs, which Princeton Review released last fall. The University of Houston ranks as No. 1 for undergraduate entrepreneurship programs.

3 Houston innovators to know this week

who's who

Editor's note: Every week, I introduce you to a handful of Houston innovators to know recently making headlines with news of innovative technology, investment activity, and more. This week's batch includes a Houston chemist, a cleaning product founder, and a UH researcher.


James Tour, chemist at Rice University

The four-year agreement will support the team’s ongoing work on removing PFAS from soil. Photo via Rice University

A Rice University chemist James Tour has secured a new $12 million cooperative agreement with the U.S. Army Engineer Research and Development Center on the team’s work to efficiently remove pollutants from soil.

The four-year agreement will support the team’s ongoing work on removing per- and polyfluoroalkyl substances (PFAS) from contaminated soil through its rapid electrothermal mineralization (REM) process, according to a statement from Rice.

“This is a substantial improvement over previous methods, which often suffer from high energy and water consumption, limited efficiency and often require the soil to be removed,” Tour says. Read more.

Kristy Phillips, founder and CEO of Clean Habits

What started as a way to bring natural cleaning products in from overseas has turned into a promising application for more sustainable agriculture solutions. Photo via LinkedIn

When something is declared clean, one question invariably springs to mind: just how clean is clean?

Then it is, “What metrics decide what’s clean and what’s not?”

To answer those questions, one must abandon the subjective and delve into the scientific — and that’s where Clean Habits come in. The company has science on its side with Synbio, a patented cleaning formula that combines a unique blend of prebiotics and probiotics for their signature five-day clean.

“Actually, we are a synbiotic, which is a prebiotic and a probiotic fused together,” says Kristy Phillips, founder and CEO of Clean Habits. “And that's what gives us the five-day clean, and we also have the longest shelf life — three years — of any probiotic on the market.” Read more.

Jiming Bao, professor at University of Houston

Th innovative method involves techniques that will be used to measure and visualize temperature distributions without direct contact with the subject being photographed. Photo via UH.edu

A University of Houston professor of electrical and computer engineering, Jiming Bao, is improving thermal imaging and infrared thermography with a new method to measure the continuous spectrum of light.

His innovative method involves techniques that will be used to measure and visualize temperature distributions without direct contact with the subject being photographed, according to the university. The challenges generally faced by conventional thermal imaging is addressed, as the new study hopes to eliminate temperature dependence, and wavelength.

“We designed a technique using a near-infrared spectrometer to measure the continuous spectrum and fit it using the ideal blackbody radiation formula,” Bao tells the journal Device. “This technique includes a simple calibration step to eliminate temperature- and wavelength-dependent emissivity.” Read more.