Houston-based imaware, which has an at-home COVID-19 testing process, is working with Texas A&M University on researching how the virus affects the human body. Getty Images

An ongoing medical phenomenon is determining how COVID-19 affects people differently — especially in terms of severity. A new partnership between a Houston-based digital health platform and Texas A&M University is looking into differences in individual risk factors for the virus.

Imaware, which launched its at-home coronavirus testing kit in April, is using its data and information collected from the testing process for this new study on how the virus affects patients differently.

"As patient advocates, we want to aid in the search to understand more about why some patients are more vulnerable than others to the deadly complications of COVID-19," says Jani Tuomi, co-founder of imaware, in a press release. "Our current sample collection process is an efficient way to provide longitudinal prospectively driven data for research and to our knowledge, is the only such approach that is collecting, assessing, and biobanking specimens in real time."

Imaware uses a third-party lab to conduct the tests at patients' homes following the Center for Disease Control's guidelines and protocol. During the test, the medical professional takes additional swabs for the study. The test is then conducted by Austin-based Wheel, a telemedicine group.

Should the patient receive positive COVID-19 results, they are contacted by a representative of Wheel with further instructions. They are also called by a member of a team led by Dr. Rebecca Fischer, an infectious disease expert and epidemiologist and laboratory scientist at the Texas A&M University School of Public Health, to grant permission to be a part of the study.

Once a part of the study, the patient remains in contact with Fischer's team, which tracks the spread and conditions of the virus in the patient. One thing the researchers are looking for is the patients' responses to virus complications caused by an overabundance of cytokines, according to the press release. Cytokines are proteins in the body that fight viruses and infections, and, if not working properly, they can "trigger an over-exuberant inflammatory response" that can cause potentially deadly issues with lung and organ failure or worse, per the release.

"We believe strongly in supporting this research, as findings from the field can be implemented to improve clinical processes-- helping even more patients," says Wheel's executive medical director, Dr. Rafid Fadul.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Axiom Space-tested cancer drug advances to clinical trials

mission critical

A cancer-fighting drug tested aboard several Axiom Space missions is moving forward to clinical trials.

Rebecsinib, which targets a cancer cloning and immune evasion gene, ADAR1, has received FDA approval to enter clinical trials under active Investigational New Drug (IND) status, according to a news release. The drug was tested aboard Axiom Mission 2 (Ax-2) and Axiom Mission 3 (Ax-3). It was developed by Aspera Biomedicine, led by Dr. Catriona Jamieson, director of the UC San Diego Sanford Stem Cell Institute (SSCI).

The San Diego-based Aspera team and Houston-based Axiom partnered to allow Rebecsinib to be tested in microgravity. Tumors have been shown to grow more rapidly in microgravity and even mimic how aggressive cancers can develop in patients.

“In terms of tumor growth, we see a doubling in growth of these little mini-tumors in just 10 days,” Jamieson explained in the release.

Rebecsinib took part in the patient-derived tumor organoid testing aboard the International Space Station. Similar testing is planned to continue on Axiom Station, the company's commercial space station that's currently under development.

Additionally, the drug will be tested aboard Ax-4 under its active IND status, which was targeted to launch June 25.

“We anticipate that this monumental mission will inform the expanded development of the first ADAR1 inhibitory cancer stem cell targeting drug for a broad array of cancers," Jamieson added.

According to Axiom, the milestone represents the potential for commercial space collaborations.

“We’re proud to work with Aspera Biomedicines and the UC San Diego Sanford Stem Cell Institute, as together we have achieved a historic milestone, and we’re even more excited for what’s to come,” Tejpaul Bhatia, the new CEO of Axiom Space, said in the release. “This is how we crack the code of the space economy – uniting public and private partners to turn microgravity into a launchpad for breakthroughs.”

Chevron enters the lithium market with major Texas land acquisition

to market

Chevron U.S.A., a subsidiary of Houston-based energy company Chevron, has taken its first big step toward establishing a commercial-scale lithium business.

Chevron acquired leaseholds totaling about 125,000 acres in Northeast Texas and southwest Arkansas from TerraVolta Resources and East Texas Natural Resources. The acreage contains a high amount of lithium, which Chevron plans to extract from brines produced from the subsurface.

Lithium-ion batteries are used in an array of technologies, such as smartwatches, e-bikes, pacemakers, and batteries for electric vehicles, according to Chevron. The International Energy Agency estimates lithium demand could grow more than 400 percent by 2040.

“This acquisition represents a strategic investment to support energy manufacturing and expand U.S.-based critical mineral supplies,” Jeff Gustavson, president of Chevron New Energies, said in a news release. “Establishing domestic and resilient lithium supply chains is essential not only to maintaining U.S. energy leadership but also to meeting the growing demand from customers.”

Rania Yacoub, corporate business development manager at Chevron New Energies, said that amid heightening demand, lithium is “one of the world’s most sought-after natural resources.”

“Chevron is looking to help meet that demand and drive U.S. energy competitiveness by sourcing lithium domestically,” Yacoub said.

---

This article originally appeared on EnergyCapital.