TMCx's 2020 cohort has been selected, and the program will begin virtually. Courtesy of TMCx

Now, more than ever, is time to think about the future of health care. Lucky for the Texas Medical Center, they've been doing that for years with their accelerator program, TMCx, which has just announced its latest cohort of health tech startups.

After redesigning the program, TMCx has been reimagined to better connect the startups and technology to TMC's member institutions. New this year was a bootcamp, in which 19 companies were invited to the TMC Innovation Institute in February to engage in programming with the TMCx team and TMC members.

"Bootcamp went off without a hitch," says Lance Black, associate director of TMCx, on a recent episode of the Houston Innovators Podcast. "And the companies all got something meaningful out of it and we were actually very surprised with the reaction and response we got from our member institutions."

The goal of the bootcamp was to connect the 19 potential cohort members to the TMC community to see which companies the health care institutions gravitated toward for potential relationships, such as a pilot program, clinical trial, or a joint development opportunity, for instance, Black says on the episode.

Black says his team took into consideration all of the feedback and selected nine startups to be a part of the cohort. At this point, with the COVID-19-caused travel issues and closures, face-to-face interaction in the program has been postponed, but the accelerator will start of virtually.

"Out of respect for our hospitals and member institutions, we want to delay the physical presence of the companies in Houston," Black says in the episode. "But that doesn't mean we're not able to call or virtually meet with the companies. There's a lot of pre-work we can do in order to prep the companies appropriately so that when they do have meetings face to face, they can put their best foot forward."

Here are the nine startups selected to be a part of the TMCx 2020 cohort:

  • San Francisco-based Atlas Health — connecting patients with payment resources
  • San Francisco-based DeepScribe — autonomous medical scribe
  • Los Angeles-based Elly Health — live healthier through positivity
  • San Francisco-based Ferrum Health — reduce preventable medical errors
  • Toronto-based HelpWear — clinical grade wearable heart monitor
  • London-based Lantum — total workforce solution for healthcare
  • Denver-based Manatee — connected, everyday therapy for kids
  • Copenhagen-based Radiobotics — automate analysis of routine medical X-rays
  • Evanston, Illinois-based Rhaeos — wearable shunt monitor (Rhaeos previously won fourth place in the 2019 Rice Business Plan Competition.)
Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH researchers develop breakthrough material to boost efficiency of sodium-ion batteries

eyes on clean energy

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

------

This article originally appeared on EnergyCapital.

Houston hospital names leading cancer scientist as new academic head

new hire

Houston Methodist Academic Institute has named cancer clinician and scientist Dr. Jenny Chang as its new executive vice president, president, CEO, and chief academic officer.

Chang was selected following a national search and will succeed Dr. H. Dirk Sostman, who will retire in February after 20 years of leadership. Chang is the director of the Houston Methodist Dr. Mary and Ron Neal Cancer Center and the Emily Herrmann Presidential Distinguished Chair in Cancer Research. She has been with Houston Methodist for 15 years.

Over the last five years, Chang has served as the institute’s chief clinical science officer and is credited with strengthening cancer clinical trials. Her work has focused on therapy-resistant cancer stem cells and their treatment, particularly relating to breast cancer.

Her work has generated more than $35 million in funding for Houston Methodist from organizations like the National Institutes of Health and the National Cancer Institute, according to the health care system. In 2021, Dr. Mary Neal and her husband Ron Neal, whom the cancer center is now named after, donated $25 million to support her and her team’s research on advanced cancer therapy.

In her new role, Chang will work to expand clinical and translational research and education across Houston Methodist in digital health, robotics and bioengineered therapeutics.

“Dr. Chang’s dedication to Houston Methodist is unparalleled,” Dr. Marc L. Boom, Houston Methodist president and CEO, said in a news release. “She is committed to our mission and to helping our patients, and her clinical expertise, research innovation and health care leadership make her the ideal choice for leading our academic mission into an exciting new chapter.”

Chang is a member of the American Association of Cancer Research (AACR) Stand Up to Cancer Scientific Advisory Council. She earned her medical degree from Cambridge University in England and completed fellowship training in medical oncology at the Royal Marsden Hospital/Institute for Cancer Research. She earned her research doctorate from the University of London.

She is also a professor at Weill Cornell Medical School, which is affiliated with the Houston Methodist Academic Institute.

Texas A&M awarded $1.3M federal grant to develop clean energy tech from electronic waste

seeing green

Texas A&M University in College Station has received a nearly $1.3 million federal grant for development of clean energy technology.

The university will use the $1,280,553 grant from the U.S. Department of Energy to develop a cost-effective, sustainable method for extracting rare earth elements from electronic waste.

Rare earth elements (REEs) are a set of 17 metallic elements.

“REEs are essential components of more than 200 products, especially high-tech consumer products, such as cellular telephones, computer hard drives, electric and hybrid vehicles, and flat-screen monitors and televisions,” according to the Eos news website.

REEs also are found in defense equipment and technology such as electronic displays, guidance systems, lasers, and radar and sonar systems, says Eos.

The grant awarded to Texas A&M was among $17 million in DOE grants given to 14 projects that seek to accelerate innovation in the critical materials sector. The federal Energy Act of 2020 defines a critical material — such as aluminum, cobalt, copper, lithium, magnesium, nickel, and platinum — as a substance that faces a high risk of supply chain disruption and “serves an essential function” in the energy sector.

“DOE is helping reduce the nation’s dependence on foreign supply chains through innovative solutions that will tap domestic sources of the critical materials needed for next-generation technologies,” says U.S. Energy Secretary Jennifer Granholm. “These investments — part of our industrial strategy — will keep America’s growing manufacturing industry competitive while delivering economic benefits to communities nationwide.”

------

This article originally appeared on EnergyCapital.