Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Getty Images

A study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

The two entities will collaborate on work focused on "fields of energy and climate; quantum computing and artificial intelligence; global health and medicine; and urban futures." Photo via Rice University

Rice University inks strategic partnership with French research institution

collaboration station

Rice University and Université Paris Sciences & Lettres signed a strategic partnership agreement last week that states that the two institutions will work together on research on some of today's most pressing subject matters.

According to an announcement made on May 13 in Paris, the two schools and research hubs will collaborate on work focused on "fields of energy and climate; quantum computing and artificial intelligence; global health and medicine; and urban futures."

The partnership allows Rice to expand its presence in France, after launching its Rice Global Paris Center about two years ago.

Université PSL consists of 11 top research institutes in France and 2,900 world-class researchers and 140 research laboratories.

“We are honored and excited to partner with Paris Sciences and Lettres University and join forces to advance bold innovation and find solutions to the biggest global challenges of our time,” Rice President Reginald DesRoches said in a statement. “The unique strengths and ambitions of our faculty, students, scholarship and research are what brings us together, and our passion and hope to build a better future for all is what will drive our partnership agenda. Representing two distinct geographic, economic and cultural regions known for ingenuity and excellence, Rice and PSL’s efforts will know no bounds.”

Rice and Université PSL plan to host conferences around the four research priorities of the partnership. The first took place last week at the Rice Global Paris Center. The universities will also biannually select joint research projects to support financially.

“This is a global and cross-disciplinary partnership that will benefit from both a bottom-up, research-driven dynamic and a top-down commitment at the highest level,” PSL President Alain Fuchs said in a statement. “The quality and complementarity of the researchers from PSL and Rice who mobilized for this event give us reason to believe that this partnership will get off to a rapid and productive start. It will offer a strong framework to all the PSL schools for developing collaborations within their areas of strength and their natural partners at Rice.”

Rice launched its Rice Global Paris Center in June 2022 in a historic 16th-century building in Le Marais. At the time it, the university shared that it was intended to support Rice-organized student programs, independent researchers, and international conferences, as well as a satellite and hub for other European research activity.

"Rice University's new home in the Marais has gone from an idea to a mature relative with a robust program of faculty research summits, student opportunities, cultural events and community engagement activities," Caroline Levander, Rice's global Vice President, said at the announcement of the partnership last week.

Click here to learn more about the Global Paris Center.

Last month, University of Houston also signed a memorandum of understanding with Heriot-Watt University in Scotland to focus on hydrogen energy solutions.

------

This article originally ran on EnergyCapital.

Nai-Hui Chia, an assistant professor of computer science at Rice, was recognized for his research on Hamiltonian simulations, a method for representing the motion of moving particles. Photo via Rice.edu

Houston professor earns Google Scholar award for quantum computing research

recent recognition

A Rice University quantum computer scientist was one of 78 global professors to be presented with a 2023 Google Scholar award, the university announced this month.

Nai-Hui Chia, an assistant professor of computer science at Rice, was recognized for his research on Hamiltonian simulations, a method for representing the motion of moving particles. Chia aims to understand if quantum computers or machines can simulate a "Hamiltonian matrix" with a shorter evolution time.

"We call this fast-forwarding for a Hamiltonian simulation,” Chia says in a statement.

Chia aims to use the funds from Google to discover Hamiltonians that can be fast-forwarded using parallelism or classical computation, according to Rice. He will present his current work on Hamiltonians and their connection to cryptology in July at the 2023 Computational Complexity Conference in Warwick, UK.

The Google Research Scholar program grants funds of up to $60,000 to support professors' research around the world. This year's cohort works in fields ranging from algorithms and optimization to natural language processing to health research.

Three other Texas researchers were awarded funds in the 2023 cohort.

The University of Texas at Austin's Jon Tamir was awarded for his work in applied sciences. Atlas Wang, also from UT, was awarded in the machine learning and data mining category. Shenglong Xu, from Texas A&M University, joined Chia in the quantum computing category.

Tech behemoth Google has awarded funds to several Houston innovators in recent years.

Last summer the company named AnswerBite, Boxes and Ease to its inaugural cohort of the Google for Startups Latino Founders Fund. Selected companies received an equity-free $100,000 investment, as well as programming and support from Google.

In September 2022, ChurchSpace and Enrichly were named part of the Google for Startups Black Founders Fund. The companies also received $100,000 non-dilutive awards along with mentoring and support.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston team develops low-cost device to treat infants with life-threatening birth defect

infant innovation

A team of engineers and pediatric surgeons led by Rice University’s Rice360 Institute for Global Health Technologies has developed a cost-effective treatment for infants born with gastroschisis, a congenital condition in which intestines and other organs are developed outside of the body.

The condition can be life-threatening in economically disadvantaged regions without access to equipment.

The Rice-developed device, known as SimpleSilo, is “simple, low-cost and locally manufacturable,” according to the university. It consists of a saline bag, oxygen tubing and a commercially available heat sealer, while mimicking the function of commercial silo bags, which are used in high-income countries to protect exposed organs and gently return them into the abdominal cavity gradually.

Generally, a single-use bag can cost between $200 and $300. The alternatives that exist lack structure and require surgical sewing. This is where the SimpleSilo comes in.

“We focused on keeping the design as simple and functional as possible, while still being affordable,” Vanshika Jhonsa said in a news release. “Our hope is that health care providers around the world can adapt the SimpleSilo to their local supplies and specific needs.”

The study was published in the Journal of Pediatric Surgery, and Jhonsa, its first author, also won the 2023 American Pediatric Surgical Association Innovation Award for the project. She is a recent Rice alumna and is currently a medical student at UTHealth Houston.

Bindi Naik-Mathuria, a pediatric surgeon at UTMB Health, served as the corresponding author of the study. Rice undergraduates Shreya Jindal and Shriya Shah, along with Mary Seifu Tirfie, a current Rice360 Global Health Fellow, also worked on the project.

In laboratory tests, the device demonstrated a fluid leakage rate of just 0.02 milliliters per hour, which is comparable to commercial silo bags, and it withstood repeated disinfection while maintaining its structure. In a simulated in vitro test using cow intestines and a mock abdominal wall, SimpleSilo achieved a 50 percent reduction of the intestines into the simulated cavity over three days, also matching the performance of commercial silo bags. The team plans to conduct a formal clinical trial in East Africa.

“Gastroschisis has one of the biggest survival gaps from high-resource settings to low-resource settings, but it doesn’t have to be this way,” Meaghan Bond, lecturer and senior design engineer at Rice360, added in the news release. “We believe the SimpleSilo can help close the survival gap by making treatment accessible and affordable, even in resource-limited settings.”

Oxy's $1.3B Texas carbon capture facility on track to​ launch this year

gearing up

Houston-based Occidental Petroleum is gearing up to start removing CO2 from the atmosphere at its $1.3 billion direct air capture (DAC) project in the Midland-Odessa area.

Vicki Hollub, president and CEO of Occidental, said during the company’s recent second-quarter earnings call that the Stratos project — being developed by carbon capture and sequestration subsidiary 1PointFive — is on track to begin capturing CO2 later this year.

“We are immensely proud of the achievements to date and the exceptional record of safety performance as we advance towards commercial startup,” Hollub said of Stratos.

Carbon dioxide captured by Stratos will be stored underground or be used for enhanced oil recovery.

Oxy says Stratos is the world’s largest DAC facility. It’s designed to pull 500,000 metric tons of carbon dioxide from the air and either store it underground or use it for enhanced oil recovery. Enhanced oil recovery extracts oil from unproductive reservoirs.

Most of the carbon credits that’ll be generated by Stratos through 2030 have already been sold to organizations such as Airbus, AT&T, All Nippon Airways, Amazon, the Houston Astros, the Houston Texans, JPMorgan, Microsoft, Palo Alto Networks and TD Bank.

The infrastructure business of investment manager BlackRock has pumped $550 million into Stratos through a joint venture with 1PointFive.

As it gears up to kick off operations at Stratos, Occidental is also in talks with XRG, the energy investment arm of the United Arab Emirates-owned Abu Dhabi National Oil Co., to form a joint venture for the development of a DAC facility in South Texas. Occidental has been awarded up to $650 million from the U.S. Department of Energy to build the South Texas DAC hub.

The South Texas project, to be located on the storied King Ranch, will be close to industrial facilities and energy infrastructure along the Gulf Coast. Initially, the roughly 165-square-mile site is expected to capture 500,000 metric tons of carbon dioxide per year, with the potential to store up to 3 billion metric tons of CO2 per year.

“We believe that carbon capture and DAC, in particular, will be instrumental in shaping the future energy landscape,” Hollub said.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.