Photo courtesy of Rice University

Hiring is tough, but retaining great people is even harder. Ask almost any manager what keeps them up at night, and the answer usually comes back to the same thing: How do we keep our best employees growing here instead of looking elsewhere?

One reliable approach has held up across industries. When people see their employer investing in their development, they’re more likely to stay, contribute, and imagine a future with the organization.

The data backs this up. Employees who take part in ongoing training are far less likely to leave, and the effect is especially strong for younger workers. One national survey found that 86% of millennials would stay with an employer that invests in their development. Companies that build a real learning culture see retention jump by 30-50%. The pattern is consistent: When people can learn and advance, they stay.

The ROI of executive education
Professional development signals value, but it also builds capability. When people have access to structured learning, they become better problem-solvers, more adaptable, and more confident leading through change.

That's the focus of Executive Education at Rice University's Jones Graduate School of Business. The portfolio is built for the realities of modern leadership: AI and digital transformation courses for teams navigating new technologies, and deeper programs in innovation and strategy for leaders sharpening long-term thinking.

“People, managers, professionals, and executives in all functional areas of business can benefit from this program,” notes Jing Zhou, Mary Gibbs Jones Professor of Management and Psychology at Rice. “We teach the fundamental principles of how to drive innovation and broaden the cognitive space.”

That perspective runs through every offering, from the Rice Advanced Management Program to the Leadership Accelerator and Leading Innovation. Each program gives participants practical tools to think strategically, work across teams and make meaningful change inside their organizations.

Building the leadership pipeline
Leadership development isn’t a perk anymore. It’s a strategic need for any organization that wants to grow and stay competitive.

Employers know this — nearly two-thirds say leadership training is essential to their success — yet employees still report feeling stalled. Reports find 74% of employees feel they aren’t reaching their potential because they lacked meaningful growth opportunities.

Rice Business designs its Executive Education programs to address that gap. The Rice Advanced Management Program, for example, supports leaders preparing for C-suite, board, or enterprise-level roles. Its format — two in-person modules separated by several weeks — gives participants space to test ideas at work, return with questions, and build on what they’ve learned. The structure fits demanding executive schedules while creating room for deeper reflection and richer peer connections.

Just as important, the program helps senior leaders align on strategy and culture. Participants develop a shared language and build stronger relationships, which translates into clearer decision-making, better collaboration, and less burnout across teams.

Houston’s advantage
Houston gives Rice Business Executive Education a distinctive edge. The city’s position in energy, healthcare, logistics, and innovation means participants are learning in the middle of a global business ecosystem. That proximity brings a mix of perspectives you don’t get in more siloed markets, and it pushes leaders to apply ideas to real-world problems in real time.

The expertise runs deep on campus, as well. Participants learn from faculty who are shaping conversations in their fields, not just teaching from a playbook. For many organizations, that outside perspective is a meaningful complement to in-house training — a chance to stretch thinking, challenge assumptions, and broaden leadership capacity.

Rice Business offers multiple paths into that experience, from open-enrollment programs like Leading Organizational Change, Executive Leadership for Women, or Driving Growth through AI and Digital Transformation to fully customized corporate partnerships. Across all formats, the focus is the same: education that is practical, relevant, and built for impact.

Investing in retention and results
When organizations make room for real development, the payoff shows up quickly: higher engagement, stronger leadership pipelines, and lower turnover. It also shapes the culture. People are more willing to take risks, ask better questions, and stay curious when they know learning is part of the job.

As Brent Smith, senior associate dean for Executive Education at Rice Business, explains, “There’s a layer of learning in leadership that’s about helping people adopt a leadership identity — to see themselves as the actual leader for their organization. That’s not an easy transition, but it’s the foundation of lasting success.”

For companies that want to build loyalty, deepen leadership capacity, and stay competitive in a fast-changing environment, investing in people isn’t optional. Rice Business Executive Education offers a clear path to do it well. Learn more here.

Check out upcoming programs:

Photo courtesy of Rice University

Rice's new program helps managers navigate the complexities of energy transition

Now Enrolling

As the planet's temperature continues to rise and extreme weather becomes the new norm, companies are under pressure to make the transition to renewable energy.

But where to start? Rice University's Jones Graduate School of Business is offering a new comprehensive program that delves into the multifaceted challenges posed by the shift toward sustainable energy.

"When it comes to the ever-evolving energy sector most people are paying attention to the tech, but businesses are faced with new organizational challenges," says Professor Yan Anthea Zhang, who will be leading the two-day program March 17-18, 2025. "Senior leaders and managers are constantly being presented with uncertainties about how to move their businesses forward, but if you wait too long, the opportunity disappears."

Energy Transition for Business Leaders participants will engage in interactive workshops, analyze case studies, and network with peers to enhance their understanding of necessary changes in organizational structure, processes, and culture. Key takeaways will include:

  • A comprehensive understanding of stakeholder demands and how to address them
  • Strategies for identifying and implementing necessary strategic changes for energy transition
  • Insights into managing organizational challenges, from resource allocation to cultural shifts
  • Tools for aligning employee incentives with the firm's strategic goals in energy transition

Wondering if you or your employees qualify? Here's who the program is designed for:

  • Senior executives and leaders involved in strategic planning and implementation
  • Sustainability officers seeking to align their organizations with future energy demands
  • HR professionals and talent managers looking to develop a workforce capable of navigating energy transition

Prof. Zhang has has explored these themes and ideas multiple times through the Jones School's MBA program, but not everyone has the time commitment for a two-year degree — or they already have one.

"Nobody has a crystal ball," says Prof. Zhang. "You need to understand your stakeholders' needs, examine your current resources and capabilities, and then make short and long-term plans to move in the direction that's best for your company. That's what participants will learn during this program."

Registration is now open for the spring dates. See more of the program's schedule and fill out an interest form on the program's website here.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston wearable biosensing company closes $13M pre-IPO round

fresh funding

Wellysis, a Seoul, South Korea-headquartered wearable biosensing company with its U.S. subsidiary based in Houston, has closed a $13.5 million pre-IPO funding round and plans to expand its Texas operations.

The round was led by Korea Investment Partners, Kyobo Life Insurance, Kyobo Securities, Kolon Investment and a co-general partner fund backed by SBI Investment and Samsung Securities, according to a news release.

Wellysis reports that the latest round brings its total capital raised to about $30 million. The company is working toward a Korea Securities Dealers Automated Quotations listing in Q4 2026 or Q1 2027.

Wellysis is known for its continuous ECG/EKG monitor with AI reporting. Its lightweight and waterproof S-Patch cardiac monitor is designed for extended testing periods of up to 14 days on a single battery charge.

The company says that the funding will go toward commercializing the next generation of the S-Patch, known as the S-Patch MX, which will be able to capture more than 30 biometric signals, including ECG, temperature and body composition.

Wellysis also reports that it will use the funding to expand its Houston-based operations, specifically in its commercial, clinical and customer success teams.

Additionally, the company plans to accelerate the product development of two other biometric products:

  • CardioAI, an AI-powered diagnostic software platform designed to support clinical interpretation, workflow efficiency and scalable cardiac analysis
  • BioArmour, a non-medical biometric monitoring solution for the sports, public safety and defense sectors

“This pre-IPO round validates both our technology and our readiness to scale globally,” Young Juhn, CEO of Wellysis, said in the release. “With FDA-cleared solutions, expanding U.S. operations, and a strong AI roadmap, Wellysis is positioned to redefine how cardiac data is captured, interpreted, and acted upon across healthcare systems worldwide.”

Wellysis was founded in 2019 as a spinoff of Samsung. Its S-Patch runs off of a Samsung Smart Health Processor. The company's U.S. subsidiary, Wellysis USA Inc., was established in Houston in 2023 and was a resident of JLABS@TMC.

Elon Musk vows to launch solar-powered data centers in space

To Outer Space

Elon Musk vowed this week to upend another industry just as he did with cars and rockets — and once again he's taking on long odds.

The world's richest man said he wants to put as many as a million satellites into orbit to form vast, solar-powered data centers in space — a move to allow expanded use of artificial intelligence and chatbots without triggering blackouts and sending utility bills soaring.

To finance that effort, Musk combined SpaceX with his AI business on Monday, February 2, and plans a big initial public offering of the combined company.

“Space-based AI is obviously the only way to scale,” Musk wrote on SpaceX’s website, adding about his solar ambitions, “It’s always sunny in space!”

But scientists and industry experts say even Musk — who outsmarted Detroit to turn Tesla into the world’s most valuable automaker — faces formidable technical, financial and environmental obstacles.

Feeling the heat

Capturing the sun’s energy from space to run chatbots and other AI tools would ease pressure on power grids and cut demand for sprawling computing warehouses that are consuming farms and forests and vast amounts of water to cool.

But space presents its own set of problems.

Data centers generate enormous heat. Space seems to offer a solution because it is cold. But it is also a vacuum, trapping heat inside objects in the same way that a Thermos keeps coffee hot using double walls with no air between them.

“An uncooled computer chip in space would overheat and melt much faster than one on Earth,” said Josep Jornet, a computer and electrical engineering professor at Northeastern University.

One fix is to build giant radiator panels that glow in infrared light to push the heat “out into the dark void,” says Jornet, noting that the technology has worked on a small scale, including on the International Space Station. But for Musk's data centers, he says, it would require an array of “massive, fragile structures that have never been built before.”

Floating debris

Then there is space junk.

A single malfunctioning satellite breaking down or losing orbit could trigger a cascade of collisions, potentially disrupting emergency communications, weather forecasting and other services.

Musk noted in a recent regulatory filing that he has had only one “low-velocity debris generating event" in seven years running Starlink, his satellite communications network. Starlink has operated about 10,000 satellites — but that's a fraction of the million or so he now plans to put in space.

“We could reach a tipping point where the chance of collision is going to be too great," said University at Buffalo's John Crassidis, a former NASA engineer. “And these objects are going fast -- 17,500 miles per hour. There could be very violent collisions."

No repair crews

Even without collisions, satellites fail, chips degrade, parts break.

Special GPU graphics chips used by AI companies, for instance, can become damaged and need to be replaced.

“On Earth, what you would do is send someone down to the data center," said Baiju Bhatt, CEO of Aetherflux, a space-based solar energy company. "You replace the server, you replace the GPU, you’d do some surgery on that thing and you’d slide it back in.”

But no such repair crew exists in orbit, and those GPUs in space could get damaged due to their exposure to high-energy particles from the sun.

Bhatt says one workaround is to overprovision the satellite with extra chips to replace the ones that fail. But that’s an expensive proposition given they are likely to cost tens of thousands of dollars each, and current Starlink satellites only have a lifespan of about five years.

Competition — and leverage

Musk is not alone trying to solve these problems.

A company in Redmond, Washington, called Starcloud, launched a satellite in November carrying a single Nvidia-made AI computer chip to test out how it would fare in space. Google is exploring orbital data centers in a venture it calls Project Suncatcher. And Jeff Bezos’ Blue Origin announced plans in January for a constellation of more than 5,000 satellites to start launching late next year, though its focus has been more on communications than AI.

Still, Musk has an edge: He's got rockets.

Starcloud had to use one of his Falcon rockets to put its chip in space last year. Aetherflux plans to send a set of chips it calls a Galactic Brain to space on a SpaceX rocket later this year. And Google may also need to turn to Musk to get its first two planned prototype satellites off the ground by early next year.

Pierre Lionnet, a research director at the trade association Eurospace, says Musk routinely charges rivals far more than he charges himself —- as much as $20,000 per kilo of payload versus $2,000 internally.

He said Musk’s announcements this week signal that he plans to use that advantage to win this new space race.

“When he says we are going to put these data centers in space, it’s a way of telling the others we will keep these low launch costs for myself,” said Lionnet. “It’s a kind of powerplay.”

Johnson Space Center and UT partner to expand research, workforce development

onward and upward

NASA’s Johnson Space Center in Houston has forged a partnership with the University of Texas System to expand collaboration on research, workforce development and education that supports space exploration and national security.

“It’s an exciting time for the UT System and NASA to come together in new ways because Texas is at the epicenter of America’s space future. It’s an area where America is dominant, and we are committed as a university system to maintaining and growing that dominance,” Dr. John Zerwas, chancellor of the UT System, said in a news release.

Vanessa Wyche, director of Johnson Space Center, added that the partnership with the UT System “will enable us to meet our nation’s exploration goals and advance the future of space exploration.”

The news release noted that UT Health Houston and the UT Medical Branch in Galveston already collaborate with NASA. The UT Medical Branch’s aerospace medicine residency program and UT Health Houston’s space medicine program train NASA astronauts.

“We’re living through a unique moment where aerospace innovation, national security, economic transformation, and scientific discovery are converging like never before in Texas," Zerwas said. “UT institutions are uniquely positioned to partner with NASA in building a stronger and safer Texas.”

Zerwas became chancellor of the UT System in 2025. He joined the system in 2019 as executive vice chancellor for health affairs. Zerwas represented northwestern Ford Bend County in the Texas House from 2007 to 2019.

In 1996, he co-founded a Houston-area medical practice that became part of US Anesthesia Partners in 2012. He remained active in the practice until joining the UT System. Zerwas was chief medical officer of the Memorial Hermann Hospital System from 2003 to 2008 and was its chief physician integration officer until 2009.

Zerwas, a 1973 graduate of the Houston area’s Bellaire High School, is an alumnus of the University of Houston and Baylor College of Medicine.