Radiomer Therapeutics has launched under Fannin Partners with an undisclosed amount of seed funding. Photo via Getty Images

Fannin Partners has done it again. The Houston-based life science development group behind medtech companies Procyrion and Allterum Therapeutics announced yesterday that it has launched Radiomer Therapeutics. With an undisclosed amount of pre-seed funding, Radiomer joins the $242 million-strong Fannin portfolio.

Radiomer uses Fannin’s proprietary Raptamer platform to target vectors and ligands for theranostic application. The cancer-fighting technology is a targeting agent that can address serious maladies including breast, lung, colorectal, prostate, and head and neck cancers.

And with Radiomer’s launch, Fannin is moving with its trademark aggressiveness. Lead programs expected to complete Phase 0 imaging/dosimetry trial(s) in cancer patients in the first quarter of next year. Those will be closely followed by therapeutic programs.

“Raptamers combine antibody level affinities with desirable physical and pharmacokinetic properties, and a rapid path to clinic,” Dr. Atul Varadhachary, CEO of Radiomer Therapeutics and Fannin managing partner, says in a press release. “We are deploying this unique platform to develop novel therapies against attractive first-in-class oncology targets.”

Varadhachary has operated Radiomer in stealth mode since its 2023 inception. However, Raptamer has been in the company’s portfolio since 2019. The new company has been using the platform to generate data with the rights to radiopharmaceutical applications for the past year.

“Our lead programs include Radiomers targeting both well-established and first-in-class cancer targets,” adds Dr. Phil Breitfeld, Radiomer’s chief medical officer. “Our imaging/dosimetry trials are designed to provide clinical evidence of tumor targeting and biodistribution information, positioning us to rapidly initiate a therapeutic program(s) if successful.”

For over a decade, Fannin has developed and supported promising life science innovations by garnering grant funding and using its team of expert product developers to build out the technology or treatment. The life science innovation timeline is very different from a software startup's, which can get to an early prototype in less than a year.

"In biotech, to get to that minimally viable product, it can take a decade and tens of millions of dollars," Varadhachary said on the Houston Innovators Podcast earlier this year.

Procyrion has announced the closing of its series E round of funding. Photo via Getty Images

Houston medical device company secures $57.7M to fund journey to FDA approval, commercialization

fresh funding

Houston-born and bred medical device company, Procyrion, has completed its series E with a raise of $57.7 million, including the conversion of $10 million of interim financing.

Procyrion is the company behind Aortix, a pump designed to be placed in the descending thoracic aorta of heart failure patients, which has been shown to improve cardiac performance in seriously ill subjects. The money raised will allow the company to proceed with a the DRAIN-HF Study, a pivotal trial that will be used for eventual FDA approval and commercialization.

The Aortix is the brainchild of Houston cardiologist Reynolds Delgado. According to Procyrion’s CSO, Jace Heuring, Delgado, gained some of his experience with devices for the heart working with legendary Texas Heart Institute surgeon O.H. “Bud” Frazier. He filed his first patents related to the Aortix in 2005.

Heuring says that the first prototypes were built in 2011, followed by the final design in 2018. CEO Eric Fain, a California-based MD and with more than 30 years in the medical device industry, joined the company in 2018 ahead of the final design, primed to bring Aortix to the public. He visits the company’s Houston headquarters, across the street from Central Market, on a regular basis.

The device’s pilot study of 18 patients was completed in 2022. Those encouraging results paved the way for the current study, which will include an enrollment of 134 patients. The randomized study will seek to treat patients with acute decompensated heart failure. Half will be treated with standard-of-care therapy, the other half will be catheterized with an Aortix pump. A separate arm of the study will seek to treat end-stage heart failure patients who would otherwise be deemed too sick for either a transplant or an LVAD permanent pump. Fort-five healthcare centers in the United States will participate, including Texas Heart Institute.

“One of the key characteristics is [the patients] are retaining a lot of fluid,” explains Heuring in a video interview. “And when I say a lot, I mean it could be 25 or 30 or 40 pounds of fluid or more. When we put our pump in, one of the main goals is to reduce that fluid load.”

On average, about 11 liters of fluid came off of each patient. Many of those end-stage patients had previously been considered for both a heart and kidney transplant, but after using the Aortix, their kidneys responded so well that they were able to get only the heart transplant.

“These patients really are in dire straits and come into the hospital and today the only proven therapy to help these patients is to administer high doses of intravenous diuretic and some other cardiac drugs and in about 25 percent of patients those therapies are ineffective,” says Fain.

If Aortix gains approval, these sickest of the sick, usually consigned to hospice care, will have hope.

Thanks to the Series E, led by Houston’s Fannin Partners, returning investors, including Bluebird Ventures, the Aortix is inching closer to commercialization. Besides funding the DRAIN-HR study, Procyrion will also use the funds for internal programs to improve product manufacturability. One more step towards meaning advanced heart failure may not always be a death sentence.

Last month, Atul Varadhachary, managing director of Fannin, joined the Houston Innovators Podcast and alluded to Procyrion's raise. The company was born out of Fannin and still resides in the same building as Fannin.

Aortix is a pump designed to be placed in the descending thoracic aorta of heart failure patients. Photo via Procyrion

Atul Varadhachary of Fannin joins the Houston Innovators Podcast. Photo via LinkedIn

Houston innovator plays the long game of life science innovation with optimized capital efficiency

HOUSTON INNOVATORS PODCAST EPISODE 222

Commercializing a life science innovation that has the potential to enhance or even save the lives of millions of patients is a marathon, not a sprint. That's how Atul Varadhachary thinks of it, and he's leading an organization that's actively running that race for several different early-stage innovations.

For over a decade, Fannin has worked diligently to develop promising life science innovations — that start as just an idea or research subject — by garnering grant funding and using its team of expert product developers to build out the technology or treatment. The model is different from what you'd see at an accelerator or incubator, and it also varies from the path taken by an academic or research institution.

The life science innovation timeline is very different from a software startup's, which can get to an early prototype in less than a year.

"In biotech, to get to that minimally viable product, it can take a decade and tens of millions of dollars," Varadhachary, managing director at Fannin, says on the Houston Innovators Podcast.



Fannin addresses what Varadhachary calls a twin bottleneck in Houston's life science innovation ecosystem. Not only does Houston not attract the funding biotech startups need desperately to grow their companies, but hiring is a major issue as the city isn't home to an established labor pool of experienced product developers within the industry.

"The challenge is that product development is more complex — it requires innovation, but that's not sufficient. When you ask people why we lag in the product development in the life sciences — although we are home to the largest medical center in the country, we don't even make list of top 10 biotech clusters — the usual answer is that we don't have enough biotech investors," Varadhachary says.

"But that puts the cart before the horse," he continues. "Investors invest in people not just ideas. Although we have an amazing pool of researchers and clinicians, we lack experienced product developers."

In more ways than one, Fannin is addressing this problem. For all of its several ongoing programs, Fannin acts as the leadership team for the technologies. Its core employees — there are about 20 currently — work on all of the companies, which are developing a range life science innovations, from Brevitest, a point-of-use immunoassay platform, to Procyrion, an intra-aortic pump for congestive heart failure patients.

Fannin's programs also range in stage, which Varadhachary outlines on the show to be three different phases. The earliest stage programs will have Fannin's team working directly on early testing, product development, and grant writing, while the later stage programs will have built out a dedicated team and raise venture investment.

Another way Fannin is addressing Houston's lack of life science product developers is through its Fannin Talent Development Program, which has given around 350 individuals an opportunity to gain critical product development experience.

With 10 years under its belt, Fannin — as well as the greater Houston life science innovation ecosystem — is at a point where it can soon produce exits needed to firm up Houston as a life science leader.

"Clearly, we've got the base elements required to be a successful ecosystem, and they continue to grow," Varadhachary says of Houston. "Typically you need one or two really big success stories — especially if those success stories result in a company being sold, leaving behind experienced product developers with money in their pockets — that's often what will supercharge the next cycle of development. I'm hoping that will happen in Houston in the next five years, decade, or so."

Houston-based Procyrion has closed a $30 million round — doubling its total funding to date. Getty Images

Houston medical device company closes $30 million round

Follow the money

A clinical-stage medical device company based in Houston has rounded up $30 million for its Series D funding. Procyrion Inc.'s round was lead by Bluebird Ventures — a new funding partner for the company.

Procyrion is developing a blood pump, called the Aortix™ system, that's optimized for patients with heart and kidney failure. Joining in on the round with Bluebird are return investors, including Fannin Partners, Scientific Health Development, the State of Texas, and an undisclosed strategic investor. This round has now more than doubled the company's total funding, bringing that figure now to $59 million.

"Of the more than 1 million patients per year in the U.S. admitted to the hospital with acute decompensated heart failure, 25 to 30 percent also have worsening renal function," says Eric S. Fain, president and CEO of the company, in a release. "These are typically the most difficult to treat patients with high mortality and rehospitalization rates."

The funds, Fain says, will go toward advancing the medical device, specifically enhancing the system's ability to decongest cardio renal patients in the company's pilot program.

"Today there is a major gap in effective therapies that are available to treat these critically ill patients, and as such, there is a significant opportunity to improve patient outcomes," Fain continues in the release. "The Aortix device is uniquely designed and positioned in the body to simultaneously decrease the workload of the heart and improve kidney function."

The Aortix device is a solution for patients who haven't seen success from medical therapy, but don't have the immediate need for a transplant or more drastic solution. The device is thinner than a pencil, the release says, and can be inserted in a matter of minutes in a cath-lab setting. The size and ease of application could be transformational for the large population of heart patients that would need it.

In addition to the funds, Jeff Bird, managing director of Bluebird Ventures, will join the company's board of directors.

"The Procyrion Aortix device provides an elegant solution for managing heart failure, a serious and difficult-to-treat problem," says Bird in the release. "We are excited to work with this experienced team as they begin clinical testing."


The device is thinner than a pencil and can be inserted in less than 10 minutes. Photo via procyrion.com

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University launches hub in India to drive education, tech innovation abroad

global mission

Rice University is launching Rice Global India, which is a strategic initiative to expand India’s rapidly growing education and technology sectors.

“India is a country of tremendous opportunity, one where we see the potential to make a meaningful impact through collaboration in research, innovation and education,” Rice President Reginald DesRoches says in a news release. “Our presence in India is a critical step in expanding our global reach, and we are excited to engage more with India’s academic leaders and industries to address some of the most pressing challenges of our time.”

The new hub will be in the country’s third-largest city and the center of the country’s high-tech industry, Bengaluru, India, and will include collaborations with top-tier research and academic institutions.

Rice continues its collaborations with institutions like the Indian Institute of Technology (IIT) Kanpur and the Indian Institute of Science (IISc) Bengaluru. The partnerships are expected to advance research initiatives, student and faculty exchanges and collaborations in artificial intelligence, biotechnology and sustainable energy.

India was a prime spot for the location due to the energy, climate change, artificial intelligence and biotechnology studies that align with Rice’s research that is outlined in its strategic plan Momentous: Personalized Scale for Global Impact.

“India’s position as one of the world’s fastest-growing education and technology markets makes it a crucial partner for Rice’s global vision,” vice president for global at Rice Caroline Levander adds. “The U.S.-India relationship, underscored by initiatives like the U.S.-India Initiative on Critical and Emerging Technology, provides fertile ground for educational, technological and research exchanges.”

On November 18, the university hosted a ribbon-cutting ceremony in Bengaluru, India to help launch the project.

“This expansion reflects our commitment to fostering a more interconnected world where education and research transcend borders,” DesRoches says.

UH-backed project secures $3.6M to transform CO2 into sustainable fuel with cutting-edge tech

funds granted

A University of Houston-associated project was selected to receive $3.6 million from the U.S. Department of Energy’s Advanced Research Projects Agency-Energy that aims to transform sustainable fuel production.

Nonprofit research institute SRI is leading the project “Printed Microreactor for Renewable Energy Enabled Fuel Production” or PRIME-Fuel, which will try to develop a modular microreactor technology that converts carbon dioxide into methanol using renewable energy sources with UH contributing research.

“Renewables-to-liquids fuel production has the potential to boost the utility of renewable energy all while helping to lay the groundwork for the Biden-Harris Administration’s goals of creating a clean energy economy,” U.S. Secretary of Energy Jennifer M. Granholm says in an ARPA-E news release.

The project is part of ARPA-E’s $41 million Grid-free Renewable Energy Enabling New Ways to Economical Liquids and Long-term Storage program (or GREENWELLS, for short) that also includes 14 projects to develop technologies that use renewable energy sources to produce sustainable liquid fuels and chemicals, which can be transported and stored similarly to gasoline or oil, according to a news release.

Vemuri Balakotaiah and Praveen Bollini, faculty members of the William A. Brookshire Department of Chemical and Biomolecular Engineering, are co-investigators on the project. Rahul Pandey, is a UH alum, and the senior scientist with SRI and principal investigator on the project.

Teams working on the project will develop systems that use electricity, carbon dioxide and water at renewable energy sites to produce renewable liquid renewable fuels that offer a clean alternative for sectors like transportation. Using cheaper electricity from sources like wind and solar can lower production costs, and create affordable and cleaner long-term energy storage solutions.

Researchers Rahul Pandey, senior scientist with SRI and principal investigator (left), and Praveen Bollini, a University of Houston chemical engineering faculty, are key contributors to the microreactor project. Photo via uh.edu

“As a proud UH graduate, I have always been aware of the strength of the chemical and biomolecular engineering program at UH and kept myself updated on its cutting-edge research,” Pandey says in a news release. “This project had very specific requirements, including expertise in modeling transients in microreactors and the development of high-performance catalysts. The department excelled in both areas. When I reached out to Dr. Bollini and Dr. Bala, they were eager to collaborate, and everything naturally progressed from there.”

The PRIME-Fuel project will use cutting-edge mathematical modeling and SRI’s proprietary Co-Extrusion printing technology to design and manufacture the microreactor with the ability to continue producing methanol even when the renewable energy supply dips as low as 5 percent capacity. Researchers will develop a microreactor prototype capable of producing 30 MJe/day of methanol while meeting energy efficiency and process yield targets over a three-year span. When scaled up to a 100 megawatts electricity capacity plant, it can be capable of producing 225 tons of methanol per day at a lower cost. The researchers predict five years as a “reasonable” timeline of when this can hit the market.

“What we are building here is a prototype or proof of concept for a platform technology, which has diverse applications in the entire energy and chemicals industry,” Pandey continues. “Right now, we are aiming to produce methanol, but this technology can actually be applied to a much broader set of energy carriers and chemicals.”

------

This article originally ran on EnergyCapital.

Houston innovator drives collaboration, access to investment with female-focused group

HOUSTON INNOVATORS PODCAST EPISODE 262

After working in technology in her home country of Pakistan, Samina Farid, who was raised in the United States, found her way to Houston in the '70s where business was booming.

She was recruited to work at Houston Natural Gas — a company that would later merge and create Enron — where she rose through the ranks and oversaw systems development for the company before taking on a role running the pipelines.

"When you're in technology, you're always looking for inefficiencies, and you always see areas where you can improve," Farid says on the Houston Innovators Podcast, explaining that she moved on from Enron in the mid-'80s, which was an exciting time for the industry.

"We had these silos of data across the industry, and I felt like we needed to be communicating better, having a good source of data, and making sure we weren't continuing to have the problems we were having," she says. "That was really the seed that got me started in the idea of building a company."

She co-founded Merrick Systems, a software solutions business for managing oil and gas production, with her nephew, and thus began her own entrepreneurial journey. She came to another crossroads in her career after selling that business in 2014 and surviving her own battle with breast cancer.

"I got involved in investing because the guys used to talk about it — there was always men around me," Farid says. "I was curious."

In 2019, she joined an organization called Golden Seeds. Founded in 2005 in New York, the network of angel investors funding female-founded enterprises has grown to around 280 members across eight chapters. Suzan Deison, CEO of the Houston Women's Chamber, was integral in bringing the organization to Houston, and now Farid leads it as head of the Houston Chapter of Golden Seeds.

For Farid, the opportunity for Houston is the national network of investors — both to connect local female founders to potential capital from coast to coast and to give Houston investors deal flow from across the country.

"It was so hard for me to get funding for my own company," Farid says. "Having access to capital was only on the coasts. Software and startups was too risky."

Now, with Golden Seeds, the opportunity is there — and Farid says its an extremely collaborative investor network, working with local organizations like the Houston Angel Network and TiE Houston.

"With angel investing, when we put our money in, we want these companies to succeed," she says."We want more people to see these companies and to invest in them. We're not competing. We want to work with others to help these companies succeed."