Radiomer Therapeutics has launched under Fannin Partners with an undisclosed amount of seed funding. Photo via Getty Images

Fannin Partners has done it again. The Houston-based life science development group behind medtech companies Procyrion and Allterum Therapeutics announced yesterday that it has launched Radiomer Therapeutics. With an undisclosed amount of pre-seed funding, Radiomer joins the $242 million-strong Fannin portfolio.

Radiomer uses Fannin’s proprietary Raptamer platform to target vectors and ligands for theranostic application. The cancer-fighting technology is a targeting agent that can address serious maladies including breast, lung, colorectal, prostate, and head and neck cancers.

And with Radiomer’s launch, Fannin is moving with its trademark aggressiveness. Lead programs expected to complete Phase 0 imaging/dosimetry trial(s) in cancer patients in the first quarter of next year. Those will be closely followed by therapeutic programs.

“Raptamers combine antibody level affinities with desirable physical and pharmacokinetic properties, and a rapid path to clinic,” Dr. Atul Varadhachary, CEO of Radiomer Therapeutics and Fannin managing partner, says in a press release. “We are deploying this unique platform to develop novel therapies against attractive first-in-class oncology targets.”

Varadhachary has operated Radiomer in stealth mode since its 2023 inception. However, Raptamer has been in the company’s portfolio since 2019. The new company has been using the platform to generate data with the rights to radiopharmaceutical applications for the past year.

“Our lead programs include Radiomers targeting both well-established and first-in-class cancer targets,” adds Dr. Phil Breitfeld, Radiomer’s chief medical officer. “Our imaging/dosimetry trials are designed to provide clinical evidence of tumor targeting and biodistribution information, positioning us to rapidly initiate a therapeutic program(s) if successful.”

For over a decade, Fannin has developed and supported promising life science innovations by garnering grant funding and using its team of expert product developers to build out the technology or treatment. The life science innovation timeline is very different from a software startup's, which can get to an early prototype in less than a year.

"In biotech, to get to that minimally viable product, it can take a decade and tens of millions of dollars," Varadhachary said on the Houston Innovators Podcast earlier this year.

Procyrion has announced the closing of its series E round of funding. Photo via Getty Images

Houston medical device company secures $57.7M to fund journey to FDA approval, commercialization

fresh funding

Houston-born and bred medical device company, Procyrion, has completed its series E with a raise of $57.7 million, including the conversion of $10 million of interim financing.

Procyrion is the company behind Aortix, a pump designed to be placed in the descending thoracic aorta of heart failure patients, which has been shown to improve cardiac performance in seriously ill subjects. The money raised will allow the company to proceed with a the DRAIN-HF Study, a pivotal trial that will be used for eventual FDA approval and commercialization.

The Aortix is the brainchild of Houston cardiologist Reynolds Delgado. According to Procyrion’s CSO, Jace Heuring, Delgado, gained some of his experience with devices for the heart working with legendary Texas Heart Institute surgeon O.H. “Bud” Frazier. He filed his first patents related to the Aortix in 2005.

Heuring says that the first prototypes were built in 2011, followed by the final design in 2018. CEO Eric Fain, a California-based MD and with more than 30 years in the medical device industry, joined the company in 2018 ahead of the final design, primed to bring Aortix to the public. He visits the company’s Houston headquarters, across the street from Central Market, on a regular basis.

The device’s pilot study of 18 patients was completed in 2022. Those encouraging results paved the way for the current study, which will include an enrollment of 134 patients. The randomized study will seek to treat patients with acute decompensated heart failure. Half will be treated with standard-of-care therapy, the other half will be catheterized with an Aortix pump. A separate arm of the study will seek to treat end-stage heart failure patients who would otherwise be deemed too sick for either a transplant or an LVAD permanent pump. Fort-five healthcare centers in the United States will participate, including Texas Heart Institute.

“One of the key characteristics is [the patients] are retaining a lot of fluid,” explains Heuring in a video interview. “And when I say a lot, I mean it could be 25 or 30 or 40 pounds of fluid or more. When we put our pump in, one of the main goals is to reduce that fluid load.”

On average, about 11 liters of fluid came off of each patient. Many of those end-stage patients had previously been considered for both a heart and kidney transplant, but after using the Aortix, their kidneys responded so well that they were able to get only the heart transplant.

“These patients really are in dire straits and come into the hospital and today the only proven therapy to help these patients is to administer high doses of intravenous diuretic and some other cardiac drugs and in about 25 percent of patients those therapies are ineffective,” says Fain.

If Aortix gains approval, these sickest of the sick, usually consigned to hospice care, will have hope.

Thanks to the Series E, led by Houston’s Fannin Partners, returning investors, including Bluebird Ventures, the Aortix is inching closer to commercialization. Besides funding the DRAIN-HR study, Procyrion will also use the funds for internal programs to improve product manufacturability. One more step towards meaning advanced heart failure may not always be a death sentence.

Last month, Atul Varadhachary, managing director of Fannin, joined the Houston Innovators Podcast and alluded to Procyrion's raise. The company was born out of Fannin and still resides in the same building as Fannin.

Aortix is a pump designed to be placed in the descending thoracic aorta of heart failure patients. Photo via Procyrion

Atul Varadhachary of Fannin joins the Houston Innovators Podcast. Photo via LinkedIn

Houston innovator plays the long game of life science innovation with optimized capital efficiency

HOUSTON INNOVATORS PODCAST EPISODE 222

Commercializing a life science innovation that has the potential to enhance or even save the lives of millions of patients is a marathon, not a sprint. That's how Atul Varadhachary thinks of it, and he's leading an organization that's actively running that race for several different early-stage innovations.

For over a decade, Fannin has worked diligently to develop promising life science innovations — that start as just an idea or research subject — by garnering grant funding and using its team of expert product developers to build out the technology or treatment. The model is different from what you'd see at an accelerator or incubator, and it also varies from the path taken by an academic or research institution.

The life science innovation timeline is very different from a software startup's, which can get to an early prototype in less than a year.

"In biotech, to get to that minimally viable product, it can take a decade and tens of millions of dollars," Varadhachary, managing director at Fannin, says on the Houston Innovators Podcast.



Fannin addresses what Varadhachary calls a twin bottleneck in Houston's life science innovation ecosystem. Not only does Houston not attract the funding biotech startups need desperately to grow their companies, but hiring is a major issue as the city isn't home to an established labor pool of experienced product developers within the industry.

"The challenge is that product development is more complex — it requires innovation, but that's not sufficient. When you ask people why we lag in the product development in the life sciences — although we are home to the largest medical center in the country, we don't even make list of top 10 biotech clusters — the usual answer is that we don't have enough biotech investors," Varadhachary says.

"But that puts the cart before the horse," he continues. "Investors invest in people not just ideas. Although we have an amazing pool of researchers and clinicians, we lack experienced product developers."

In more ways than one, Fannin is addressing this problem. For all of its several ongoing programs, Fannin acts as the leadership team for the technologies. Its core employees — there are about 20 currently — work on all of the companies, which are developing a range life science innovations, from Brevitest, a point-of-use immunoassay platform, to Procyrion, an intra-aortic pump for congestive heart failure patients.

Fannin's programs also range in stage, which Varadhachary outlines on the show to be three different phases. The earliest stage programs will have Fannin's team working directly on early testing, product development, and grant writing, while the later stage programs will have built out a dedicated team and raise venture investment.

Another way Fannin is addressing Houston's lack of life science product developers is through its Fannin Talent Development Program, which has given around 350 individuals an opportunity to gain critical product development experience.

With 10 years under its belt, Fannin — as well as the greater Houston life science innovation ecosystem — is at a point where it can soon produce exits needed to firm up Houston as a life science leader.

"Clearly, we've got the base elements required to be a successful ecosystem, and they continue to grow," Varadhachary says of Houston. "Typically you need one or two really big success stories — especially if those success stories result in a company being sold, leaving behind experienced product developers with money in their pockets — that's often what will supercharge the next cycle of development. I'm hoping that will happen in Houston in the next five years, decade, or so."

Houston-based Procyrion has closed a $30 million round — doubling its total funding to date. Getty Images

Houston medical device company closes $30 million round

Follow the money

A clinical-stage medical device company based in Houston has rounded up $30 million for its Series D funding. Procyrion Inc.'s round was lead by Bluebird Ventures — a new funding partner for the company.

Procyrion is developing a blood pump, called the Aortix™ system, that's optimized for patients with heart and kidney failure. Joining in on the round with Bluebird are return investors, including Fannin Partners, Scientific Health Development, the State of Texas, and an undisclosed strategic investor. This round has now more than doubled the company's total funding, bringing that figure now to $59 million.

"Of the more than 1 million patients per year in the U.S. admitted to the hospital with acute decompensated heart failure, 25 to 30 percent also have worsening renal function," says Eric S. Fain, president and CEO of the company, in a release. "These are typically the most difficult to treat patients with high mortality and rehospitalization rates."

The funds, Fain says, will go toward advancing the medical device, specifically enhancing the system's ability to decongest cardio renal patients in the company's pilot program.

"Today there is a major gap in effective therapies that are available to treat these critically ill patients, and as such, there is a significant opportunity to improve patient outcomes," Fain continues in the release. "The Aortix device is uniquely designed and positioned in the body to simultaneously decrease the workload of the heart and improve kidney function."

The Aortix device is a solution for patients who haven't seen success from medical therapy, but don't have the immediate need for a transplant or more drastic solution. The device is thinner than a pencil, the release says, and can be inserted in a matter of minutes in a cath-lab setting. The size and ease of application could be transformational for the large population of heart patients that would need it.

In addition to the funds, Jeff Bird, managing director of Bluebird Ventures, will join the company's board of directors.

"The Procyrion Aortix device provides an elegant solution for managing heart failure, a serious and difficult-to-treat problem," says Bird in the release. "We are excited to work with this experienced team as they begin clinical testing."


The device is thinner than a pencil and can be inserted in less than 10 minutes. Photo via procyrion.com

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Here are 3 Houston innovators to know right now

Innovators to Know

Editor's note: These Houston innovators are making big strides in the fields of neurotechnology, neurodevelopmental diagnosis, and even improving the way we rest and recharge.

For our latest roundup of Innovators to Know, we meet a researcher who is working with teams in Houston and abroad to develop an innovative brain implant; a professor who has created an AI approach to diagnosis; and a local entrepreneur whose brand is poised for major expansion in the coming years.

Jacob Robinson, CEO of Motif Neurotech

Houston startup Motif Neurotech has been selected by the United Kingdom's Advanced Research + Invention Agency (ARIA) to participate in its inaugural Precision Neurotechnologies program. The program aims to develop advanced brain-interfacing technologies for cognitive and psychiatric conditions. Three Rice labs will collaborate with Motif Neurotech to develop Brain Mesh, which is a distributed network of minimally invasive implants that can stimulate neural circuits and stream neural data in real time. The project has been awarded approximately $5.9 million.

Motif Neurotech was spun out of the Rice lab of Jacob Robinson, a professor of electrical and computer engineering and bioengineering and CEO of Motif Neurotech.

Robinson will lead the system and network integration and encapsulation efforts for Mesh Points implants. According to Rice, these implants, about the size of a grain of rice, will track and modulate brain states and be embedded in the skull through relatively low-risk surgery. Learn more.

Dr. Ryan S. Dhindsa, Dhindsa Lab

Dr. Ryan S. Dhindsa, assistant professor of pathology and immunology at Baylor and principal investigator at the Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, and his team have developed an artificial intelligence-based approach that will help doctors to identify genes tied to neurodevelopmental disorders. Their research was recently published the American Journal of Human Genetics.

Dhindsa Lab uses “human genomics, human stem cell models, and computational biology to advance precision medicine.” The diagnoses that stem from the new computational tool could include specific types of autism spectrum disorder, epilepsy and developmental delay, disorders that often don’t come with a genetic diagnosis.

“Although researchers have made major strides identifying different genes associated with neurodevelopmental disorders, many patients with these conditions still do not receive a genetic diagnosis, indicating that there are many more genes waiting to be discovered,” Dhindsa says. Learn more.

Khaliah Guillory, Founder of Nap Bar

From nap research to diversity and inclusion, this entrepreneur is making Houston workers more productiveFrom opening Nap Bar and consulting corporations on diversity and inclusion to serving the city as an LGBT adviser, Khaliah Guillory is focused on productivity. Courtesy of Khaliah Guillory

Khalia Guillory launched her white-glove, eco-friendly rest sanctuary business, Nap Bar, in Houston in 2019 to offer a unique rest experience with artificial intelligence integration for working professionals, entrepreneurs and travelers who needed a place to rest, recharge and rejuvenate.

Now she is ready to take it to the next level, with a pivot to VR and plans to expand to 30 locations in three years.

Guillory says she’s now looking to scale the business by partnering with like-minded investors with experience in the wellness space. She envisions locations at national and international airports, which she says offer ripe scenarios for patrons needing to recharge. Additionally, Guillory wants to build on her initial partnership with UT Health by going onsite to curate rest experiences for patients, caregivers, faculty, staff, nurses and doctors. Colleges also offer an opportunity for growth. Learn more.

United breaks ground on $177 million facility and opens tech center at IAH

off the ground

United Airlines announced new infrastructure investments at George Bush Intercontinental Airport as part of the company’s ongoing $3.5 billion investment into IAH.

United broke ground on a new $177 million Ground Service Equipment (GSE) Maintenance Facility this week that will open in 2027.

The 140,000-square-foot GSE facility will support over 1,800 ground service vehicles and with expansive repair space, shop space and storage capacity. The GSE facility will also be targeted for LEED Silver certification. United believes this will provide more resources to assist with charging batteries, fabricating metal and monitoring electronic controls with improved infrastructure and modern workspaces.

Additionally, the company opened its new $16 million Technical Operations Training Center.

The center will include specialized areas for United's growing fleet, and advanced simulation technology that includes scenario-based engine maintenance and inspection training. By 2032, the Training Center will accept delivery of new planes. This 91,000-square-foot facility will include sheet metal and composite training shops as well.

The Training Center will also house a $6.3 million Move Team Facility, which is designed to centralize United's Super Tug operations. United’s IAH Move Team manages over 15 Super Tugs across the airfield, which assist with moving hundreds of aircraft to support flight departures, remote parking areas, and Technical Operations Hangars.

The company says it plans to introduce more than 500 new aircraft into its fleet, and increase the total number of available seats per domestic departure by nearly 30%. United also hopes to reduce carbon emissions per seat and create more unionized jobs by 2026.

"With these new facilities, Ground Service Equipment Maintenance Facility and the Technical Operations Training Center, we are enhancing our ability to maintain a world-class fleet while empowering our employees with cutting-edge tools and training,” Phil Griffith, United's Vice President of Airport Operations, said in a news release. “This investment reflects our long-term vision for Houston as a critical hub for United's operations and our commitment to sustainability, efficiency, and growth."