The Rice Alliance for Technology and Entrepreneurship identified eight startups that are best suited for disrupting energy tech and innovation. Photo courtesy of Rice Alliance

In honor of CERAWeek, the Rice Alliance for Technology and Entrepreneurship hosted its annual Energy Venture Day.

After over 50 startup pitches and more than 300 meetings, venture investors identified eight startups that are the most-promising companies on a path to innovate and disrupt the energy ecosystem.

The 2023 Energy Venture Day's Most-Promising Startup winners were:

AeroShield Materials

Graphic via aeroshield.tech

Hyde Park, Massachusetts-based AeroShield Materials is creating thermally insulating transparent inserts. The inserts are only four millimeters of AeroShield's material and, when placed inside a double-pane window, provides 65 percent more energy efficiency.

Columbia Power Technologies (C-Power)

Image via cpower.co

C-Power, based in Charlottesville, Virgina, has a technology that harnesses the power of the ocean.

"C-Power delivers this renewable energy resource to the world, both through low-power solutions that bring energy and the cloud to the sea and large-scale solutions that help decarbonize terrestrial grids," the company's website reads.

EarthEn

Graphic via earthen.energy

Chandler, Arizona-based EarthEn is focused on long duration energy storage solutions that use CO2 in a closed loop to store 4 to 100 hours of energy at a low cost. The SaaS tools — with artificial intelligence and machine learning — optimize peak demand pricing and use predictive analysis to enable grid resiliency.

Group1

Photo via Twitter

Group 1, based in Austin, is focused on the commercialization of potassium-ion batteries. The core technology originates from the labs of University of Texas at Austin professor JB Goodenough, co-inventor of the lithium-ion battery.

Ionada Carbon Solutions

Photo via ionada.com

Houston-based Ionada, a member of Halliburton Labs, has created a technology that can remove up to 99 percent of the carbon dioxide emissions for the energy, marine, and e-fuels, according to the company.

"Our engineers have more than a century of combined expertise in reducing emissions for the power generation, chemical, road, rail, air and marine industries. We are here to help you find the best sustainable solution to reduce your emissions," reads the website.

H Quest Vanguard

Photo courtesy of Halliburton

Another Halliburton Labs member H Quest Vanguard, headquartered in Pittsburgh, has developed an electrically powered chemical conversion platform that leverages Microwave Plasma Pyrolysis to liberate zero-CO2 hydrogen from natural gas using only a quarter of energy required by electrolysis, while coproducing a high-value carbon or petrochemical coproduct.

Pressure Corp

Photo by Anton Petrus/Getty

Houston-based Pressure Corp is developing waste pressure power systems to help midstream gas companies solve how they reduce emissions by providing the technology, capital and expertise required to achieve their environmental, social and governance goals.

STARS Technology

Photo via starsh2.com

Based in Richland, Washington, STARS Technology Corp. is commercializing advanced micro-channel chemical process technology that originally was designed for NASA and the Department of Energy. The company's reactors and heat exchangers are compact, energy-efficient, and more.

The Rice Alliance has named its second annual cohort. Photo via Getty Images

5 Houston energy tech companies named to Rice accelerator

seeing green

The Rice Alliance for Technology and Entrepreneurship has announced the 17 companies joining its second accelerator — and the program didn't have to venture very far for some of them.

The Rice Alliance Clean Energy Accelerator named the early- to mid-stage startups that will participate in its second annual class — five of which are based in Houston:

  • CLS Wind is developing a unique system to lift any size wind turbine component to any height using smaller-capacity cranes, an efficient, safe and economical solution to a lack of available high-capacity cranes and vessels.
  • Dsider is developing a low code solution for climate minded organizations to visualize and analyze their carbon pathways to plan, prioritize and operate sustainably and economically.
  • Emission Critical is developing carbon accounting and management software as a service to help enterprises solve end-to-end carbon footprinting with minimum effort
  • NanoTech is developing advanced materials to help businesses and individuals solve fireproofing and thermal insulation challenges with new world particles.
  • Pressure Corp is developing waste pressure power systems to help midstream gas companies solve how they reduce emissions by providing the technology, capital and expertise required to achieve their environmental, social and governance goals.

The 10-week program kicks off at the university’s Rice Alliance Energy Tech Venture Forum in September, and concludes on Demo Day on Nov. 17. While mostly virtual, the program will welcome the complete cohort to Houston three times throughout the accelerator.

The full cohort of companies — which come from seven states and four countries — has already collectively raised more than $54.5 million. Over the 10 weeks, the companies will receive support and mentorship to help them raise funding, launch pilots, win adoption into the marketplace, and more.

The 2022 cohort specializes across the spectrum of clean energy, including advanced materials, digital technology for energy, energy efficiency, energy storage, geothermal energy, hydrogen, waste heat to power, wave energy, and wind energy. The rest of the cohort includes:

  • Atargis Energy, based in Colorado, is developing an innovative twin hydrofoil-based wave energy converter technology combined with a proprietary feedback control system that combines real-time sensors, predictive algorithms and machine learning to make possible the first predictable, low-cost, utility-scale baseload electricity sourced from ocean waves for utilities and other electricity providers.
  • Based in Somerville, Massachusetts, Eden GeoPower Inc. is developing electrical reservoir stimulation technology to help geothermal, petroleum and mineral resource developers solve issues with low-permeability reservoirs by effectively increasing permeability in a way that uses less water and emits less CO2 than traditional stimulation methods.
  • FuelX has developed solid-state hydrogen power systems to help transportation manufacturers meet their customers’ growing performance requirements by using high-energy-density systems that outperform batteries and other pure hydrogen solutions. When coupled with a green hydrogen raw material, FuelX systems provide zero-carbon power.
  • GeoGen Technologies — a Canadian company — is developing a new kind of geothermal that allows oil and gas companies to convert end of life oil and gas wells to economic geothermal.
  • Durham, North Carolina-based GOLeafe uses organic materials and non-energy or capital-intensive equipment to produce graphene oxide — the world's strongest, thinnest and most conductive material — through a process that’s 10 times more cost efficient and eco-friendly using readily available materials such as hay, sugar and wood chips.
  • LiNa Energy is commercializing safe, sustainable, solid-state sodium batteries that contain no lithium or cobalt.
  • Luminescent, based in the United Kingdom, is building an isothermal expansion heat engine for waste heat recovery along gas transmission pipelines.
  • Nobel improves fuel efficiency for gas-fired power plants with drop in, reliable supersonic combustion technology.
  • Quino Energy — based in California — produces low-cost, long-lifetime aqueous organic flow batteries for grid storage applications. The charge is stored in specially designed organic molecules called quinones, which are produced from cheap chemical precursors in a proprietary, zero-waste process.
  • Viridly, based in Texas, is developing geothermal power plants with patent-pending generator technology alongside geothermal greenhouses to provide the first financially viable way to confidently deliver and scale up the development of baseload geothermal electricity.
  • Another Canadian company, Volta Technique’s compressed air storage and management technology addresses the unpredictable and ever-increasing cost of energy for large commercial and industrial electricity users while enabling decarbonization of the electricity grid through higher integration of renewable energy.
  • Wootz, another Texas company, is developing a scalable manufacturing process to produce sustainable, cost-effective, high-performance carbon nanotube materials at commercial scale to replace or enhance traditional metallic conductors.

Twelve companies participated in Class 1 of the Rice Alliance Clean Energy, which was delivered virtually last summer. The 12 startups in that inaugural class have raised a combined $6.5 million in funding, identified and launched pilots, met investors, hired staff and moved their offices to Houston.

The program is supported by founding sponsor Wells Fargo and supporters: BP, Baker Botts, Chevron, ExxonMobil, Halliburton Labs, Equinor, Microsoft, NRG, Saudi Aramco Energy Ventures, Shell Ventures, Sunnova, TotalEnergies, Tudor Pickering Holt, Canadian Consulate, TC Energy, Phillips 66, and ENI Next.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston hardtech accelerator names 8 scientists to 2025 cohort

ready, set, activate

National hardtech-focused organization Activate has named its 2025 cohort of scientists, which includes new members to Activate Houston.

The Houston hub was introduced last year, and joins others in Boston, New York, and Berkley, California—where Activate is headquartered. The organization also offers a virtual and remote cohort, known as Activate Anywhere. Collectively, the 2025 Activate Fellowship consists of 47 scientists and engineers from nine U.S. states.

This year's cohort comprises subject matter experts across various fields, including quantum, robotics, biology, agriculture, energy and direct air capture.

Activate aims to support scientists at "the outset of their entrepreneurial journey." It partners with U.S.-based funders and research institutions to support its fellows in developing high-impact technology. The fellows receive a living stipend, connections from Activate's robust network of mentors and access to a curriculum specific to the program for two years.

“Science entrepreneurship is the origin story of tomorrow’s industries,” Cyrus Wadia, CEO of Activate, said in an announcement. “The U.S. has long been a world center for science leadership and technological advancement. When it comes to solving the world’s biggest challenges, hard-tech innovation is how we unlock the best solutions. From infrastructure to energy to agriculture, these Activate Fellows are the bold thinkers who are building the next generation of science-focused companies to lead us into the future.”

The Houston fellows selected for the 2025 class include:

  • Jonathan Bessette, founder and CEO of KIRA, which uses its adaptive electrodialysis system to treat diverse water sources and reduce CO2 emissions
  • Victoria Coll Araoz, co-founder and chief science officer of Florida-based SEMION, an agricultural technology company developing pest control strategies by restoring crops' natural defenses
  • Eugene Chung, co-founder and CEO of Lift Biolabs, a biomanufacturing company developing low-cost, nanobubble-based purification reagents. Chung is completing his Ph.D. in bioengineering at Rice University.
  • Isaac Ju, co-founder of EarthFlow AI, which has developed an AI-powered platform for subsurface modeling, enabling the rapid scaling of carbon storage, geothermal energy and lithium extraction
  • Junho Lee, principal geotechnical engineer of Houston-based Deep Anchor Solutions, a startup developing innovative anchoring systems for floating renewables and offshore infrastructure
  • Sotiria (Iria) Mostrou, principal inventor at Houston-based Biosimo Chemicals, a chemical engineering startup that develops and operates processes to produce bio-based platform chemicals
  • Becca Segel, CEO and founder of Pittsburgh-based FlowCellutions, which prevents power outages for critical infrastructure such as hospitals, data centers and the grid through predictive battery diagnostics
  • Joshua Yang, CEO and co‑founder of Cambridge, Massachusetts-based Brightlight Photonics, which develops chip-scale titanium: sapphire lasers to bring cost-effective, lab-grade performance to quantum technologies, diagnostics and advanced manufacturing

The program, led locally by Houston Managing Director Jeremy Pitts, has supported 296 Activate fellows since the organization was founded in 2015. Members have gone on to raise roughly $4 billion in follow-on funding, according to Activate's website.

Activate officially named its Houston office in the Ion last year.

Charlie Childs, co-founder and CEO of Intero Biosystems, which won both the top-place finish and the largest total investment at this year's Rice Business Plan Competition, was named to the Activate Anywhere cohort. Read more about the Boston, New York, Berkley and Activate Anywhere cohorts here.

Houston team’s discovery brings solid-state batteries closer to EV use

A Better Battery

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape.

The team, led by Yan Yao, the Hugh Roy and Lillie Cranz Cullen Distinguished Professor of Electrical and Computer Engineering at UH, recently published its findings in the journal Nature Communications.

The work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

“This research solves a long-standing mystery about why solid-state batteries sometimes fail,” Yao, corresponding author of the study, said in a news release. “This discovery allows solid-state batteries to operate under lower pressure, which can reduce the need for bulky external casing and improve overall safety.”

A solid-state battery replaces liquid electrolytes found in conventional lithium-ion cells with a solid separator, according to Car and Driver. They also boast faster recharging capabilities, better safety and higher energy density.

However, when it comes to EVs, solid-state batteries are not ideal since they require high external stack pressure to stay intact while operating.

Yao’s team learned that tiny empty spaces, or voids, form within the solid-state batteries and merge into a large gap, which causes them to fail. The team found that adding small amounts of alloying elements, like magnesium, can help close the voids and help the battery continue to function. The team captured it in real-time with high-resolution videos that showed what happens inside a battery while it’s working under a scanning electron microscope.

“By carefully adjusting the battery’s chemistry, we can significantly lower the pressure needed to keep it stable,” Lihong Zhao, the first author of this work, a former postdoctoral researcher in Yao’s lab and now an assistant professor of electrical and computer engineering at UH, said in the release. “This breakthrough brings solid-state batteries much closer to being ready for real-world EV applications.”

The team says it plans to build on the alloy concept and explore other metals that could improve battery performance in the future.

“It’s about making future energy storage more reliable for everyone,” Zhao added.

The research was supported by the U.S. Department of Energy’s Battery 500 Consortium under the Vehicle Technologies Program. Other contributors were Min Feng from Brown; Chaoshan Wu, Liqun Guo, Zhaoyang Chen, Samprash Risal and Zheng Fan from UH; and Qing Ai and Jun Lou from Rice.

---

This article originally appeared on EnergyCaptialHTX.com.

Rice biotech accelerator appoints 2 leading researchers to team

Launch Pad

The Rice Biotech Launch Pad, which is focused on expediting the translation of Rice University’s health and medical technology discoveries into cures, has named Amanda Nash and Kelsey L. Swingle to its leadership team.

Both are assistant professors in Rice’s Department of Bioengineering and will bring “valuable perspective” to the Houston-based accelerator, according to Rice. 

“Their deep understanding of both the scientific rigor required for successful innovation and the commercial strategies necessary to bring these technologies to market will be invaluable as we continue to build our portfolio of lifesaving medical technologies,” Omid Veiseh, faculty director of the Launch Pad, said in a news release.

Amanda Nash

Nash leads a research program focused on developing cell communication technologies to treat cancer, autoimmune diseases and aging. She previously trained as a management consultant at McKinsey & Co., where she specialized in business development, portfolio strategy and operational excellence for pharmaceutical and medtech companies. She earned her doctorate in bioengineering from Rice and helped develop implantable cytokine factories for the treatment of ovarian cancer. She holds a bachelor’s degree in biomedical engineering from the University of Houston.

“Returning to Rice represents a full-circle moment in my career, from conducting my doctoral research here to gaining strategic insights at McKinsey and now bringing that combined perspective back to advance Houston’s biotech ecosystem,” Nash said in the release. “The Launch Pad represents exactly the kind of translational bridge our industry needs. I look forward to helping researchers navigate the complex path from discovery to commercialization.”

Kelsey L. Swingle

Swingle’s research focuses on engineering lipid-based nanoparticle technologies for drug delivery to reproductive tissues, which includes the placenta. She completed her doctorate in bioengineering at the University of Pennsylvania, where she developed novel mRNA lipid nanoparticles for the treatment of preeclampsia. She received her bachelor’s degree in biomedical engineering from Case Western Reserve University and is a National Science Foundation Graduate Research Fellow.

“What draws me to the Rice Biotech Launch Pad is its commitment to addressing the most pressing unmet medical needs,” Swingle added in the release. “My research in women’s health has shown me how innovation at the intersection of biomaterials and medicine can tackle challenges that have been overlooked for far too long. I am thrilled to join a team that shares this vision of designing cutting-edge technologies to create meaningful impact for underserved patient populations.”

The Rice Biotech Launch Pad opened in 2023. It held the official launch and lab opening of RBL LLC, a biotech venture creation studio in May. Read more here.