Researchers from Baylor College of Medicine and the University of Houston have developed a new blood-filtering machine that poses fewer risks to pediatric patients with hyperleukocytosis. Photo courtesy UH.

A team of Houston researchers has developed a new microfluidic device aimed at making treatments safer for children with hyperleukocytosis, a life-threatening hematologic emergency often seen in patients with leukemia.

Dr. Fong Lam, an associate professor of pediatrics at Baylor College of Medicine and a pediatric intensive care physician at Texas Children’s Hospital, partnered with Sergey Shevkoplyas, a professor of biomedical engineering at UH, on the device that uses a large number of tiny channels to quickly separate blood cells by size in a process called controlled incremental filtration, according to a news release from UH.

They tested whether performing cell separation with a high-throughput microfluidic device could alleviate the limitations of traditional conventional blood-filtering machines, which pose risks for pediatric patients due to their large extracorporeal volume (ECV), high flow rates and tendency to cause significant platelet loss in the patient. The results of their study, led by Mubasher Iqbal, a Ph.D. candidate in biomedical engineering at UH, were published recently in the journal Nature Communications.

“Continuously and efficiently separating leukocytes from recirculating undiluted whole blood — without device clogging and cell activation or damage — has long been a major challenge in microfluidic cell separation,” Shevkoplyas said in a news release. “Our study is the first to solve this problem.”

Hyperleukocytosis is a condition that develops when the body has an extremely high number of white blood cells, which in many cases is due to leukemia. According to the release, up to 20 percent to 30 percent of patients with acute leukemia develop hyperleukocytosis, and this places them at risk for potentially fatal complications.

The new device utilizes tiny channels—each about the width of a human hair—to efficiently separate blood cells through controlled incremental filtration. According to Lam, the team was excited that the new device could operate at clinically relevant flow rates.

The device successfully removed approximately 85 percent of large leukocytes and 90 percent of leukemic blasts from undiluted human whole blood without causing platelet loss or other adverse effects. It also operates with an ECV that’s about 1/70th of conventional leukapheresis machines, which makes it particularly suitable for infants and small children.

“Overall, our study suggests that microfluidics leukapheresis is safe and effective at selectively removing leukocytes from circulation, with separation performance sufficiently high to ultimately enable safe leukapheresis in children,” Shevkoplyas said in the release.

A team of researchers at the University of Houston is working to develop a new treatment for Rhabdomyosarcoma, an aggressive cancer with a higher incidence in young children. Photo via Getty Images.

UH research team receives grant to fight aggressive pediatric cancer

cancer research

Researchers at the University of Houston have received a $3.2 million grant from the National Institutes of Health to help find innovative ways to treat Rhabdomyosarcoma, or RMS.

According to a statement from the university, RMS is a malignant soft tissue sarcoma that has a higher incidence in young children and is responsible for 8 percent of pediatric cancer cases with a relatively low survival rate.

One way UH is working on the issue is by studying how and why RMS cells, which are found most often in muscle tissue, divide uncontrollably without ever maturing into normal muscle cells. The researchers aim to tackle a target inside RMS cells known as TAK1, which plays a key role in regulating cell growth.

“By targeting TAK1, we aim to stop the cancer at its source and help the cells develop normally,” Ashok Kumar, the Else and Philip Hargrove Endowed Professor of Drug Discovery at the UH College of Pharmacy and director of the Institute of Muscle Biology and Cachexia, said in a news release. “This approach could lead to new and better treatments for RMS.”

According to UH, preliminary results demonstrated that TAK1 is highly activated in embryonal RMS cells, which are found in younger children; alveolar RMS cells, which are found in older children and teens; and human RMS samples. This suggests that the protein plays a major role in the development of this form of cancer.

The team still aims to uncover how the protein helps RMS cancer grow and plans to evaluate how blocking TAK1 can be used as a therapeutic.

“Blocking TAK1, either by changing the genes (genetic approaches) or using drugs (pharmacological approaches), can stop certain harmful behaviors in cancer cells,” Kumar added. “This was tested both in lab-grown cells and in living models, showing that TAK1 is a key target to control RMS cancer’s spread and aggressiveness, and inhibits tumor formation.”

Allterum Therapeutics Inc., a portfolio company of Fannin Innovation Studio, is using the funds to prepare for clinical trials. Photo via Getty Images

Houston biotech startup raises millions to battle pediatric cancer

fresh funds

Allterum Therapeutics Inc. has built a healthy launchpad for clinical trials of an immunotherapy being developed to fight a rare form of pediatric cancer.

The Houston startup recently collected $1.8 million in seed funding through an investor group associated with Houston-based Fannin Innovation Studio, which focuses on commercializing biotech and medtech discoveries. Allterum has also brought aboard pediatric oncologist Dr. Philip Breitfeld as its chief medical officer. And the startup, a Fannin spinout, has received a $2.9 million grant from the Cancer Prevention Research Institute of Texas.

The funding and Breitfeld's expertise will help Allterum prepare for clinical trials of 4A10, a monoclonal antibody therapy for treatment of cancers that "express" the interleukin-7 receptor (IL7R) gene. These cancers include pediatric acute lymphoblastic leukemia (ALL) and some solid-tumor diseases. The U.S. Food and Drug Administration (FDA) has granted "orphan drug" and "rare pediatric disease" designations to Allterum's monoclonal antibody therapy.

If the phrase "monoclonal antibody therapy" sounds familiar, that's because the FDA has authorized emergency use of this therapy for treatment of COVID-19. In early January, the National Institute of Allergy and Infectious Diseases announced the start of a large-scale clinical trial to evaluate monoclonal antibody therapy for treatment of mild and moderate cases of COVID-19.

Fannin Innovation Studio holds exclusive licensing for Allterum's antibody therapy, developed at the National Cancer Institute. Aside from the cancer institute, Allterum's partners in advancing this technology include the Therapeutic Alliance for Children's Leukemia, Baylor College of Medicine, Texas Children's Hospital, Children's Oncology Group, and Leukemia & Lymphoma Society.

Although many pediatric patients with ALL respond well to standard chemotherapy, some patients continue to grapple with the disease. In particular, patients whose T-cell ALL has returned don't have effective standard therapies available to them. Similarly, patients with one type of B-cell ALL may not benefit from current therapies. Allterum's antibody therapy is designed to effectively treat those patients.

Later this year, Allterum plans to seek FDA approval to proceed with concurrent first- and second-phase clinical trials for its immunotherapy, says Dr. Atul Varadhachary, managing partner of Fannin Innovation Studio, and president and CEO of Allterum. The cash Allterum has on hand now will go toward pretrial work. That will include the manufacturing of the antibody therapy by Japan's Fujifilm Diosynth Biotechnologies, which operates a facility in College Station.

"The process of making a monoclonal antibody ready to give to patients is actually quite expensive," says Varadhachary, adding that Allterum will need to raise more money to carry out the clinical trials.

The global market for monoclonal antibody therapies is projected to exceed $350 billion by 2027, Fortune Business Insight says. The continued growth of these products "is expected to be a major driver of overall biopharmaceutical product sales," according to a review published last year in the Journal of Biomedical Science.

One benefit of these antibody therapies, delivered through IV-delivered infusions, is that they tend to cause fewer side effects than chemotherapy drugs, the American Cancer Society says.

"Monoclonal antibodies are laboratory-produced molecules engineered to serve as substitute antibodies that can restore, enhance or mimic the immune system's attack on cancer cells. They are designed to bind to antigens that are generally more numerous on the surface of cancer cells than healthy cells," the Mayo Clinic says.

Varadhachary says that unlike chemotherapy, monoclonal antibody therapy takes aim at specific targets. Therefore, monoclonal antibody therapy typically doesn't broadly harm healthy cells the way chemotherapy does.

Allterum's clinical trials initially will involve children with ALL, he says, but eventually will pivot to children and adults with other kinds of cancer. Varadhachary believes the initial trials may be the first cancer therapy trials to ever start with children.

"Our collaborators are excited about that because, more often than not, the cancer drugs for children are ones that were first developed for adults and then you extend them to children," he says. "We're quite pleased to be able to do something that's going to be important to children."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Trailblazing Houston entrepreneur brings big ideas to new Yahoo Finance show

tune in

Elizabeth Gore, co-founder and president of Houston's Hello Alice, debuted the first episode of her new video podcast series with Yahoo Finance on Thursday, April 24.

The weekly series, known as "The Big Idea with Elizabeth Gore," will focus on providing information and resources to small business owners and sharing stories of entrepreneurship, according to a news release from Yahoo Finance.

“Entrepreneurs and small business owners drive our country’s economy forward. With a record number of small businesses launching in our communities, my goal is to help every citizen live the American Dream. On the Big Idea, we will break down barriers for entrepreneurs and lift up opportunities for every person wanting to be their own boss,” Gore said in the release.

“By hosting the 'Big Idea' on Yahoo Finance, I’m looking forward to elevating business owners’ stories and providing actionable insights to small business owners at a scale like never before. I am blown away to be joining the number one finance news source that is already trusted by so many.”

Gore was joined by Hello Alice co-founder and CEO Carolyn Rodz in the premiere episode, titled "Got a big idea for a small business? Here's your first step," to discuss the steps they took when launching the business.

Gore and Rodz founded Hello Alice in 2017. The fintech platform supports over 1.5 million small businesses across the nation. It has helped owners access affordable capital and credit and distributed over $57 million in grants to businesses across various industries. The company raised a series C round backed by Mastercard last year for an undisclosed amount and reported that the funding brought the company's valuation up to $130 million at the time.

According to Yahoo Finance, Gore's experience and expertise build on its "mission to be the trusted guide of financial information to all investors, and democratize access to quality content."

“Over the past year, we invested in expanding our programming lineup with the launch of new shows and podcasts, and welcomed new financial creators and influencers into our newsroom,” Anthony Galloway, head of content at Yahoo Finance, added the release. “By diversifying our programming and talent roster, Yahoo Finance is introducing unique points-of-view that make financial topics more engaging, actionable, and personalized. Small business owners are a vital part of our audience, so we’re excited to welcome Elizabeth Gore from Hello Alice, whose insights and expertise will help us serve and connect with this important cohort in meaningful ways.”

The show is available on Spotify, Apple Podcasts, iHeart, Pandora, and Amazon Music for listening. Streamers can view it on yahoofinance.com, Amazon Prime Video, Samsung TV, Fire TV, Vizio, Haystack, DirectTV and other streaming platforms. Watch the premiere here:

7 top Houston researchers join Rice innovation cohort for 2025

top of class

The Liu Idea Lab for Innovation and Entrepreneurship (Lilie) has announced its 2025 Rice Innovation Fellows cohort, which includes students developing cutting-edge thermal management solutions for artificial intelligence, biomaterial cell therapy for treating lymphedema, and other innovative projects.

The program aims to support Rice Ph.D. students and postdocs in turning their research into real-world solutions and startups.

“Our fourth cohort of fellows spans multiple industries addressing the most pressing challenges of humanity,” Kyle Judah, Lilie’s executive director, said in a news release. “We see seven Innovation Fellows and their professors with the passion and a path to change the world.”

The seven 2025 Innovation Fellows are:

Chen-Yang Lin, Materials Science and Nanoengineering, Ph.D. 2025

Professor Jun Lou’s Laboratory

Lin is a co-founder of HEXAspec, a startup that focuses on creating thermal management solutions for artificial intelligence chips and high-performance semiconductor devices. The startup won the prestigious H. Albert Napier Rice Launch Challenge (NRLC) competition last year and also won this year's Energy Venture Day and Pitch Competition during CERAWeek in the TEX-E student track.

Sarah Jimenez, Bioengineering, Ph.D. 2027

Professor Camila Hochman-Mendez Laboratory

Jimenez is working to make transplantable hearts out of decellularized animal heart scaffolds in the lab and the creating an automated cell delivery system to “re-cellularize” hearts with patient-derived stem cells.

Alexander Lathem, Applied Physics and Chemistry, Ph.D. 2026

Professor James M. Tour Laboratory

Lathem’s research is focused on bringing laser-induced graphene technology from “academia into industry,” according to the university.

Dilrasbonu Vohidova is a Bioengineering, Ph.D. 2027

Professor Omid Veiseh Laboratory

Vohidova’s research focuses on engineering therapeutic cells to secrete immunomodulators, aiming to prevent the onset of autoimmunity in Type 1 diabetes.

Alexandria Carter, Bioengineering, Ph.D. 2027

Professor Michael King Laboratory

Carter is developing a device that offers personalized patient disease diagnostics by using 3D culturing and superhydrophobicity.

Alvaro Moreno Lozano, Bioengineering, Ph.D. 2027

Professor Omid Veiseh Lab

Lozano is using novel biomaterials and cell engineering to develop new technologies for patients with Type 1 Diabetes. The work aims to fabricate a bioartificial pancreas that can control blood glucose levels.

Lucas Eddy, Applied Physics and Chemistry, Ph.D. 2025

Professor James M. Tour Laboratory

Eddy specializes in building and using electrothermal reaction systems for nanomaterial synthesis, waste material upcycling and per- and polyfluoroalkyl substances (PFAS) destruction.

This year, the Liu Lab also introduced its first cohort of five commercialization fellows. See the full list here.

The Rice Innovation Fellows program assists doctoral students and postdoctoral researchers with training and support to turn their ideas into ventures. Alumni have raised over $20 million in funding and grants, according to Lilie. Last year's group included 10 doctoral and postdoctoral students working in fields such as computer science, mechanical engineering and materials science.

“The Innovation Fellows program helps scientist-led startups accelerate growth by leveraging campus resources — from One Small Step grants to the Summer Venture Studio accelerator — before launching into hubs like Greentown Labs, Helix Park and Rice’s new Nexus at The Ion,” Yael Hochberg, head of the Rice Entrepreneurship Initiative and the Ralph S. O’Connor Professor in Entrepreneurship, said in the release. “These ventures are shaping Houston’s next generation of pillar companies, keeping our city, state and country at the forefront of innovation in mission critical industries.”

Houston startup Collide secures $5M to grow energy-focused AI platform

Fresh Funds

Houston-based Collide, a provider of generative artificial intelligence for the energy sector, has raised $5 million in seed funding led by Houston’s Mercury Fund.

Other investors in the seed round include Bryan Sheffield, founder of Austin-based Parsley Energy, which was acquired by Dallas-based Pioneer Natural Resources in 2021; Billy Quinn, founder and managing partner of Dallas-based private equity firm Pearl Energy Investments; and David Albin, co-founder and former managing partner of Dallas-based private equity firm NGP Capital Partners.

“(Collide) co-founders Collin McLelland and Chuck Yates bring a unique understanding of the oil and gas industry,” Blair Garrou, managing partner at Mercury, said in a news release. “Their backgrounds, combined with Collide’s proprietary knowledge base, create a significant and strategic moat for the platform.”

Collide, founded in 2022, says the funding will enable the company to accelerate the development of its GenAI platform. GenAI creates digital content such as images, videos, text, and music.

Originally launched by Houston media organization Digital Wildcatters as “a professional network and digital community for technical discussions and knowledge sharing,” the company says it will now shift its focus to rolling out its enterprise-level, AI-enabled solution.

Collide explains that its platform gathers and synthesizes data from trusted sources to deliver industry insights for oil and gas professionals. Unlike platforms such as OpenAI, Perplexity, and Microsoft Copilot, Collide’s platform “uniquely accesses a comprehensive, industry-specific knowledge base, including technical papers, internal processes, and a curated Q&A database tailored to energy professionals,” the company said.

Collide says its approximately 6,000 platform users span 122 countries.

---

This story originally appeared on our sister site, EnergyCapitalHTX.com.