Rice University students Emmie Casey and Tomi Kuye used smartphone motors to develop a vibrotactile glove. Photo by Gustavo Raskosky/ Courtesy Rice University.

Two Rice undergraduate engineering students have developed a non-invasive vibrotactile glove that aims to alleviate the symptoms of Parkinson’s disease through therapeutic vibrations.

Emmie Casey and Tomi Kuye developed the project with support from the Oshman Engineering Design Kitchen (OEDK) and guidance from its director, Maria Oden, and Rice lecturer Heather Bisesti, according to a news release from the university.

The team based the design on research from the Peter Tass Lab at Stanford University, which explored how randomized vibratory stimuli delivered to the fingertips could help rewire misfiring neurons in the brain—a key component of Parkinson’s disease.

Clinical trials from Stanford showed that coordinated reset stimulation from the vibrations helped patients regain motor control and reduced abnormal brain activity. The effects lasted even after users removed the vibrotactile gloves.

Casey and Kuye set out to replicate the breakthrough at a lower cost. Their prototype replaced the expensive motors used in previous designs with motors found in smartphones that create similar tiny vibrations. They then embedded the motors into each fingertip of a wireless glove.

“We wanted to take this breakthrough and make it accessible to people who would never be able to afford an expensive medical device,” Casey said in the release. “We set out to design a glove that delivers the same therapeutic vibrations but at a fraction of the cost.”

Rice’s design also targets the root of the neurological disruption and attempts to retrain the brain. An early prototype was given to a family friend who had an early onset of the disease. According to anecdotal data from Rice, after six months of regularly using the gloves, the user was able to walk unaided.

“We’re not claiming it’s a cure,” Kuye said in the release. “But if it can give people just a little more control, a little more freedom, that’s life-changing.”

Casey and Kuye are working to develop a commercial version of the glove priced at $250. They are taking preorders and hope to release 500 pairs of gloves this fall. They've also published an open-source instruction manual online for others who want to try to build their own glove at home. They have also formed a nonprofit and plan to use a sliding scale price model to help users manage the cost.

“This project exemplifies what we strive for at the OEDK — empowering students to translate cutting-edge research into real-world solutions,” Oden added in the release. “Emmie and Tomi have shown extraordinary initiative and empathy in developing a device that could bring meaningful relief to people living with Parkinson’s, no matter their resources.”

Rice researchers are cleaning up when it comes to grants and competitions. Photo via Rice.edu

Rice University innovators claim prizes across health care, energy research

big wins

Undergraduate students from Rice University were awarded the top prize in a health innovation challenge.

Design by Biomedical Undergraduate Teams (DEBUT) Challenge, which is organized by the National Institutes of Health (NIH) and the non-profit organization VentureWell, selected medical device team UroFlo as its winner, claiming the $20,000 prize. The technology, a continuous bladder irrigation system, was recognized for its potential to revolutionize post-operative care and improve patient outcomes.

The winning team from Rice consists of 2024 bioengineering graduates Anushka Agrawal, Sahana Prasanna, Robert Heeter, Archit Chabbi, Kevin Li, and Richard Chan. The UroFlo system provides care to patients after surgery and reduces the burden on health care professionals by implementing state-of-the-art sensors and machine learning algorithms with a touchscreen user interface. This helps with data collection, processing and visualization. UroFlo promises to enhance the management of urinary tract infections (UTIs) and help prevent blood clots.

“We have learned so much from this process and we are really proud of what we have accomplished,” says Chabbi in a news release. “It’s truly rewarding to know that our work can impact patients’ experience and help improve quality of care. Over the many hours we spent working in the Oshman Engineering Design Kitchen (OEDK) at Rice, we’ve not only developed an amazing set of skills, but have also forged really strong connections with one-another and the nearby medical community at the Texas Medical Center.”

The award will be presented on Oct. 25 in Baltimore during the annual Biomedical Engineering Society (BMES) conference.

UroFlo was also with first place in the Johns Hopkins Healthcare Design Competition in the Post-Surgical Infection Management category; first place in the American Society for Artificial Internal Organs Student Design Competition; “Best Medical Device Technology Award” in the 2024 Huff Engineering Design Showcase and competition held by the OEDK; “Outstanding Bioengineering Design Project,” Rice Department of Bioengineering; “Best Presentation” in the Texas Children’s Hospital Surgical Research Day; finalist and “Best Engineering Project” in Rice’s 2024 Shapiro Research Showcases; and semi-finalist in the H. Albert Napier Rice Launch Challenge. UroFlo will continue after Rice, as the project will be developed further.

“We are all very passionate about biomedical engineering, and dedicated and committed to making a difference” Chan said in a news release. “We actually decided to continue to develop UroFlo after our graduation from Rice a few months ago with the hope of improving our innovative solution for urological care.”

In other news, Rice University’s Naomi Halas won $7.5 million over five years from the United States Department of Defense (DOD) Air Force Office of Scientific Research (AFOSR) with her project proposal Multidisciplinary University Research Initiative (MURI) for her project titled “Combining Nonequilibrium Chemistries with Atomic Precision,” which competed in the category “plasmon-controlled single-atom catalysis.”

“Combining Nonequilibrium Chemistries with Atomic Precision” addressed the need for more energy-efficient and less protocol-intensive chemical processes that involve using light to drive chemical reactions and single-atom “reactors” to catalyze chemical reactions that are nearly 100 percent specific in terms of reaction products.

Plasmons work when they make metal nanoparticles act like antennas, and certain designed reactor sites on their surfaces can then carry out chemical reactions at a fraction of the “energy expenditure of conventional industrial catalysts” according to a news release.

Rice University and Baylor College of Medicine have also received $2.8 million in funding from the National Heart, Lung, and Blood Institute (NHLBI) for their research on reducing inflammation and lung damage in acute respiratory distress syndrome (ARDS) patients.

“Cell Based Immunomodulation to Suppress Lung Inflammation and Promote Repair,” will be co-led byRice’s Omid Veiseh, a professor of bioengineering and faculty director of the Rice Biotech Launch Pad, and professor of surgery at Baylor Ravi Kiran Ghanta. They will develop a new translational cell therapy platform “ to allow a better local administration of cytokines to the lungs in order to suppress inflammation and potentially prevent lung damage in ARDS patients” according to a news release.

A Rice University team of engineers designed a low-cost ventilator, and now the device, which has been picked up for manufacturing, has received approval from the FDA. Photo courtesy of Jeff Fitlow/Rice University

Ventilator designed by Rice University team gets FDA approval

in the bag

A ventilator that was designed by a team at Rice University has received Emergency Use Authorization from the U.S. Food and Drug Administration amid the COVID-19 pandemic.

The ApolloBVM was worked on March by students at Rice's Brown School of Engineering's Oshman Engineering Design Kitchen, or OEDK. The open-source plans were shared online so that those in need could have access to the life-saving technology. Since its upload, the ApolloBVM design has been downloaded by almost 3,000 registered participants in 115 countries.

"The COVID-19 pandemic pushed staff, students and clinical partners to complete a novel design for the ApolloBVM in the weeks following the initial local cases," says Maria Oden, a teaching professor of bioengineering at Rice and director of the OEDK, in the press release. "We are thrilled that the device has received FDA Emergency Use Authorization."

While development began in 2018 with a Houston emergency physician, Rohith Malya, Houston manufacturer Stewart & Stevenson Healthcare Technologies LLC, a subsidiary of Kirby Corporation that licensed ApolloBVM in April, has worked with the team to further manufacture the device into what it is today.

An enhanced version of the bag valve mask-based ventilator designed by Rice University engineers has won federal approval as an emergency resuscitator for use during the COVID-19 pandemic. Photo courtesy of Stewart & Stevenson

The Rice team worked out of OEDK throughout the spring and Stewart & Stevenson joined to support the effort along with manufacturing plants in Oklahoma City and Houston.

"The FDA authorization represents an important milestone achievement for the Apollo ABVM program," says Joe Reniers, president of Kirby Distribution and Services, in the release. "We can now commence manufacturing and distribution of this low-cost device to the front lines, providing health care professionals with a sturdy and portable ventilation device for patients during the COVID-19 pandemic."

Reniers continues, "It is a testimony to the flexibility of our people and our manufacturing facilities that we are able to readily utilize operations to support COVID-19 related need."

The device's name was selected as a tribute to Rice's history with NASA and President John F. Kennedy's now-famous speech kicking off the nation's efforts to go to the moon. It's meaningful to Matthew Wettergreen, one of the members of the design team.

"When a crisis hits, we use our skills to contribute solutions," Wettergreen previously told CultureMap. "If you can help, you should, and I'm proud that we're responding to the call."

A Houston-based team of scientists and students have developed a low-cost ventilator. Photo courtesy of Rice University

Rice University students and staff team up with Canadian company to make low-cost ventilators

hi, tech

As the COVID-19 case numbers continue to grow, hospitals around the world are either experiencing or expecting a shortage of ventilation units. In Houston, a team of students and staff at Rice University have designed a solution.

Along with Canadian global health design firm, Metric Technologies, the Rice team has developed an automated bag valve mask ventilator that can be crafted for less than $300. Moreover, the team expects to share the designs so that these low-cost machines can be produced everywhere.

The project is being called Take a Breather and was inspired by an early prototype that a group of engineering seniors developed in 2019 at Rice's Brown School of Engineering's Oshman Engineering Design Kitchen, or OEDK. The idea was to take a bag valve mask, which medical professionals use manually by squeezing with their hands, and create a device that can instead compress the bag automatically.

The parts of the device are largely created via 3D printing and laser cut, according to a press release from Rice, and only took around a week to prototype. While the original project was created to help emergency medicine professionals using a manual ventilator, the device is very relevant in the current coronavirus crisis.

"The immediate goal is a device that works well enough to keep noncritical COVID-19 patients stable and frees up larger ventilators for more critical patients," says Amy Kavalewitz, executive director of the OEDK, in the release.

As principal at Metric Technologies, Dr. Rohith Malya, who is assistant professor of emergency medicine at Baylor College of Medicine and an adjunct assistant professor of bioengineering at Rice, saw the growing need for for automated ventilator masks in emergency medicine.

"This is a clinician-informed end-to-end design that repurposes the existing BVM global inventory toward widespread and safe access to mechanical ventilation," Malya says in the release.

According to Malya, more than 100 million bag valve masks are produced annually. The designed device, which can work with these bags, has been named the ApolloBVM — a nod to when President John F. Kennedy announced from the Rice campus that it was his mission to get America to the moon.

"This project appeals to our ingenuity, it's a Rice-based project and it's for all of humanity," he says in the release. "And we're on an urgent timescale. We decided to throw it all on the table and see how far we go."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

6 Houston startups disrupting industries with innovative technology

meet the finalists

Houston is no stranger to technology that's shaping the future. As the longtime location of NASA Johnson Space Center to home base for new ventures disrupting industries with their technology, the Bayou City has had its finger on the pulse of what's new and next for decades.

The Deep Tech Business category in our 2025 Houston Innovation Awards will honor an innovative startup providing technology solutions based on substantial scientific or engineering challenges, including those in the AI, robotics and space sectors.

Six deep tech companies have been named finalists for the 2025 award. They range from a company developing predictive software to accelerate the energy transition to a new venture that's developing humanoid robots.

Read more about these businesses, their founders and their breakthrough technologies below. Then join us at the Houston Innovation Awards on Nov. 13 at Greentown Labs, when the winner will be unveiled.

Tickets are now on sale for this exclusive event celebrating Houston Innovation.

ARIX Technologies

Industrial and robotics company ARIX Technologies is an integrated robotics and data analytics company that delivers inspection services. Its ARIX VENUS robot combines aerospace-grade engineering, advanced non-destructive testing (NDT) and AI-powered analytics to detect hidden corrosion under insulation for the downstream energy, petrochemical, and chemical processing sectors.

ARIX was founded in 2017 by Dianna Liu, a former ExxonMobil engineer. Craig Mallory serves as CEO. The company reports that it is scaling deployments with major Gulf Coast refineries, expanding its analytics platform to include predictive corrosion modeling and growing a global partner program.

Little Place Labs

Space tech company Little Place Labs is developing an AI, machine-learning software across a network of satellites that can provide insights from space in under seven minutes.

The company was founded in 2022 by CEO Bosco Lai and CTO Gaurav Bajaj. The company recently received an award from the U.S. Space Force that will support it in deploying multiple applications and products onto more than 55 satellites over the next 36 months for both national security and commercial use cases. The company won the Security, GovTech & Space competition at the SXSW Pitch showcase last year.

Newfound Materials

Newfound Materials has developed a predictive synthesis software platform for accelerating the discovery of novel materials for critical energy applications, such as batteries, magnets, catalysts, and more. It guides users on the best experiments to try in the lab to optimize the synthesis of their materials.

Newfound Materials was founded in 2024 by CEO Matthew McDermott and participated in the inaugural Activate cohort. The company plans to release a public web app soon. It also has plans to raise a pre-seed or angel round.

Paladin Drones

Paladian develops drone-as-first-responder (DFR) systems for public safety. Its technology gives first responders live aerial video before teams arrive, enabling quicker decisions, better resource allocation and reduced false alarms.

The company was founded in 2018 by Divyaditya Shrivastava and participated in the Y Combinator accelerator that year. The company raised a $5.2 million seed round in 2024 and another round for an undisclosed amount earlier this year. In the future, it plans to expand its DFR deployments into more cities, offer new payload delivery capabilities (like delivering Narcan and life vests), and enhance deconfliction features.

Persona AI

Persona AI is building modularized humanoid robots that aim to deliver continuous, round-the-clock productivity and skilled labor for "dull, dirty, dangerous, and declining" jobs.

The company was founded by Houston entrepreneur Nicolaus Radford, who serves as CEO, along with CTO Jerry Pratt and COO Jide Akinyode. It raised eight figures in pre-seed funding this year and also expanded its operations at the Ion. The company is developing its prototype of a robot-welder for Hyundai's shipbuilding division, which it plans to unveil in 2026.

Tempest Droneworx

Tempest Droneworx provides real-time intelligence collected through drones, robots and sensors. Its Harbinger software platform shares data through a video game engine and aims to provide teams with early warning and insight to help them make decisions faster.

The company was founded in 2021 by CEO Ty Audronis and COO Dana Abramovitz. It participated in the Mass Challenge Air Force Labs and won the Best Speed Pitch at SXSW earlier this year. The company is currently raising a $2.5M seed round.

---

The Houston Innovation Awards program is sponsored by Houston Community College, Houston Powder Coaters, FLIGHT by Yuengling, and more to be announced soon. For sponsorship opportunities, please contact sales@innovationmap.com.


Houston has the lowest inflation problem in the U.S., new study finds

Money Talk

Despite the national inflation rate sitting at 3 percent as of September 2025, the impact of inflation on Houston and the surrounding area isn't as severe as the rest of the U.S., a new study has revealed.

Houston-The Woodlands-Sugar Land ranked as the metro with the smallest inflation problem in the U.S. in WalletHub's October 2025 "Changes in Inflation by City" report.

The study tracked inflation changes for 23 major metropolitan statistical areas (MSAs) using Consumer Price Index data from the latest month available and compared to data from two months prior. The analysis also factored in inflation data from last year to analyze both short- and long-term inflation changes.

Compared to two months ago, the inflation rate in Houston fell by 0.1 percent, and local inflation is only 1.10 percent higher than it was a year ago, WalletHub said.

Houston residents may be feeling the sting a lot less than they did in January 2024, when WalletHub said the city had the 7th highest inflation rate in the country. And yet, Houstonians are increasingly concerned with the economy and its effects on inflation, a recent University of Houston survey found.

A separate WalletHub study named Texas the No. 1 most "financially distressed" state in the U.S. for 2025, adding to the severity of Texans' economical woes.

U.S. cities with the worst inflation problems

Denver-Aurora-Lakewood, Colorado topped the list as the city with the No. 1 worst inflation problem as of September. The Denver metro saw a 1 percent uptick in inflation when compared to two months prior, and it's 3.10 percent higher than it was a year ago.

Elsewhere in Texas, WalletHub ranked Dallas-Fort Worth-Arlington as the metro with the 8th lowest inflation problem nationwide. That's a fair shift from a previous report from June 2025 that ranked DFW the No. 1 U.S. metro with the lowest inflation issues.

The top 10 metros where inflation has risen the most as of September 2025 are:

  • No. 1 – Denver-Aurora-Lakewood, Colorado
  • No. 2 – Los Angeles-Long Beach-Anaheim, California
  • No. 3 – Chicago-Naperville-Elgin, Illinois-Indiana-Wisconsin
  • No. 4 – Boston-Cambridge-Newton, Massachusetts-New Hampshire
  • No. 5 –Minneapolis-St. Paul-Bloomington, Minnesota-Wisconsin
  • No. 6 – (tied) Philadelphia-Camden-Wilmington, Pennsylvania-New Jersey-Delaware-Maryland and Washington-Arlington-Alexandria, D.C.-Virginia-Maryland-West Virginia
  • No. 8 – Anchorage, Alaska
  • No. 9 – New York-Newark-Jersey City, New York-New Jersey-Pennsylvania
  • No. 10 – San Diego-Carlsbad, California
---

This article originally appeared on CultureMap.com.

Axiom Space taps solar array developer for first space station module

space contract

Houston-based Axiom Space is making progress on developing its commercial space station.

The company awarded Florida-based Redwire Corporation a contract to develop and deliver roll-out solar array (ROSA) wings to power the Axiom Payload Power Thermal Module (AxPPTM), which will be the first module for the new space station.

AxPPTM will initially attach to the International Space Station. AxPPTM will later separate from the ISS and rendezvous with Axiom’s Habitat 1 (AxH1) on orbit. Eventually, an airlock, Habitat 2 (AxH2) and finally the Research and Manufacturing Facility (AxRMF) will be added to the first two Axiom modules.

AxPPTM is anticipated to launch toward the end of 2027. The two-module station (AxPPTM and AxH1) is expected to be operational as a free-flying station by 2028, and the full four-module station around 2030.

The modules will be integrated and assembled at Axiom Space’s Assembly and Integration facility, making them the first human-rated spacecraft built in Houston.

Redwire’s ROSA technology was originally developed for the ISS, according to Space News. It has yielded a 100 percent success rate on on-orbit performance. The technology has also been used on NASA’s Double Asteroid Redirection Test mission, the Maxar-built Power and Propulsion Element for the Artemis Lunar Gateway and Thales Alenia Space’s Space Inspire satellites.

“As a market leader for space power solutions, Redwire is proud to be selected as a strategic supplier to deliver ROSAs for Axiom Space’s first space station module,” Mike Gold, Redwire president of civil and international space, said in a news release. “As NASA and industry take the next steps to build out commercial space stations to maintain U.S. leadership in low-Earth orbit, Redwire continues to be the partner of choice, enabling critical capabilities to ensure on-orbit success.”