Stratolaunch successfully completed its hypersonic test flight earlier this year. Image courtesy of Draper

With a recent air-launched test vehicle flight that came close to hypersonic speed, research company Draper has accelerated the potential for its flight technology.

Draper, a Cambridge, Massachusetts-based nonprofit, provided the crucial guidance, navigation, and control flight software for the flight. That guidance system was built on the same Draper technology that NASA has used in its Apollo mission, the international space station and space shuttle programs.

“In a broad sense, Draper has been working hypersonic since Apollo,” Rick Loffi, space systems program manager and lead executive for Draper’s Houston campus, tells InnovationMap.

The navigation software controlled the first powered test flight of an air-launched vehicle that approached the hypersonic threshold of Mach 5, or 3,800 miles per hour, or five times the speed of sound.

Stratolaunch successfully completed the flight of its TA-1 Talon test vehicle in the Mojave Desert in March. The California-based company designs and launches aerospace vehicles and technologies, providing access to a reusable hypersonic testing platform, according to its website. The historic test flight landed in the Pacific Ocean, and achieved successful ignition, acceleration and sustained altitude climb.

“The Draper software is really what’s stabilizing the vehicle during flight…and controlling it as it gets up into altitude and speed,” Brandon Jalbert, space systems program manager for Draper and team lead for Stratolaunch, says “so it’s not doing loop-de-loops, or getting unstable…blowing up in the atmosphere.”

Draper uses model-based design and algorithms in its software, and for the boost phase of the Talon test, Draper developed a novel algorithm, which built upon its previous work for NASA, Jalbert says.

Aerospace manufacturing companies like Boom and Hermeus stand poised to pick up where the Concorde left off, and are racing to implement and execute on accessible hypersonic and supersonic commercial technology.

The Concorde aircraft made supersonic, four-hour transoceanic flights a reality, but only for the very wealthy, and shut down in 2003.

Draper is not involved in any of those ventures to bring accessible supersonic flight back to the skies. Its primary focus with hypersonic will remain with deterrence and testing platforms, Jalbert says.

But the company’s technology “has applications everywhere from military to commercial activity,“ he says.

“Our focus is to solve complex challenges of national importance,” he says, “whether that’s…helping our commercial partners, or working on civil or military applications. That’s where we see ourselves being of value to the industry.”

With the harsh conditions involved in hypersonic flight, advancing the technology has its challenges.

“You’ve got to have proper hardware and electronics and sensors that can operate within those conditions,” Jalbert says.

Draper originated in 1932 when engineer Charles Stark Draper founded what eventually became the Instrumentation Lab at MIT.

His work on inertial navigation theory paved the way for the use of the autopilot in today’s commercial jets. The lab was divested by MIT in the 1970s, and became a nonprofit. Draper has long been a government contractor and has worked on many military projects, dating to WWII.

Draper in 2023 secured the $2.2 billion renewal of a long-standing contract with the U.S. Navy to provide the guidance system for the submarine-launched Trident II D-5 missile.

The U.S. government has shown a growing interest in the development of hypersonic weapons systems, as Russia and China have developed advanced capabilities.

The Pentagon’s budget request for hypersonic research for fiscal year 2025 was $6.9 billion, up from $4.7 billion for 2023, according to a recent U.S. Naval Institute report.

“There’s a big shift, in deterrence, as well as offensive, on hypersonic,” Jalbert says.

However, the Defense Department has not yet acquired hypersonic weapons, according to the report, but is developing prototypes and testing.

Draper has a long, celebrated history with NASA, and its Houston office is housed at Johnson Space Center. Draper's presence in Houston dates back to the 1960s, Loffi says.

From the Apollo missions to the space station and now the Artemis program, which aims to land the first person of color and the first woman on the moon by 2026 on its Orion spacecraft, Draper has partnered with NASA every step of the way, providing its navigation system for space flight.

“Right now, our biggest customer within NASA is the Orion program,” Loffi says, with approximately 15 of the 20-person Houston office working on the project, in collaboration with the company’s Cambridge colleagues.

Draper's Houston office is working on NASA's Orion program. Photo via NASA

The company is also working with NASA on lunar landing technology and sub-orbital experiments, as well as the propulsion element and Gateway space station for Artemis.

Amazon founder Jeff Bezos’s aerospace manufacturing company Blue Origin is also partnering with Draper to develop the Artemis human landing system.

Neither Loffi nor Jalbert aspired to go into outer space themselves, but rather to provide solutions to make that possible. Human spaceflight has been a lifelong passion for Loffi.

While he had lots of job opportunities after graduating from Purdue University with a degree in electrical engineering, Loffi chose NASA.

“I wasn’t that person who grew up dreaming of becoming an astronaut,” Loffi says. “I was old enough to see the Apollo 11 moon landing, and it did inspire me.”

His work at NASA began after the space shuttle Challenger explosion, in 1986. He was part of the agency’s effort to return to space flight, and worked on space station development, before joining Draper in 2011.

Jalbert, a graduate of Northeastern University, says his early work at Draper “lit the fires for my interest in space.”

Meet Commander Reid Wiseman, the responsible for the success of the Artemis II mission once it launches. Photo courtesy of NASA

Meet the Houstonian commanding NASA's historic return to the moon

Q&A

The world now knows the names of the four Houston-based astronauts who will launch in the first crewed moon mission in 50 years. NASA's Artemis II will see the first woman and person of color helming a lunar voyage, a first since the agency's history.

Astronaut Christina Hammock Koch, herself part of a history-making astronaut class and first all-female spacewalk— will join Victor Glover — the first person of color heading to the moon. Rookie Canadian astronaut Jeremy Hansen rounds out the crew with Commander Reid Wiseman.

Building on the unmanned Artemis I mission to the moon that concluded in December, Artemis II is slated to launch around November 2024, per NASA. In a scene familiar to space fans, the Artemis II crew will deploy inside the cozy Orion spacecraft that will sit atop the Space Launch System (SLS) rocket from Kennedy Space Center in Florida.

Artemis II's crew will spend some 10 days in orbit and even venture farther than the 1.4 million miles logged by Artemis I, adding to the historic nature of the journey. After moon orbit, the spacecraft will return to Earth for splashdown and recovery — always a celebrated moment after the highly anticipated takeoff.

Data gathered from Artemis II will pad information from Artemis I in effort to create a permanent moon outpost. On the moon, crews will learn how to live and work away from Earth, which will pave the way for the eventual mission to Mars. A planned Artemis III mission may launch in 2025 or '26, per NASA, which picks up from the last trip, Apollo 17 in 1972. The Artemis III mission, NASA promises, will see the first woman and person of color on the moon.

CultureMap caught up with a very busy Wiseman, who is now responsible for the success of the Artemis II mission once it launches. Hailing from Baltimore, Maryland, the 47-year-old earned his master's degree from Johns Hopkins University and is a decorated naval aviator, serving in the Middle East as a fighter pilot. The Artemis II mission commander completed a 165-day trip to the International Space Station in 2014 and was most recently chief of the astronaut office, per his bio. He has two sons with wife Carol, who passed away from cancer in May 2020.

The Artemis II crew was announced earlier this week. Photo courtesy of NASA

CultureMap: Congratulations, Commander. As Artemis II's leader, you are joining lunar mission commander names like the first man on the moon, Neil Armstrong, and Apollo 13's Jim Lovell. Do you allow yourself to think like that?

Reid Wiseman: Thank you. I do not allow myself to think like that. I think if you get to meet this crew — Victor Glover, Christina Koch, Jeremy Hanson — I really think we would say we want this to be so routine. We want Artemis II to be so successful and so long term that people completely forget about us. We're just that initial little stepping stone. I really hope that's the case. I am flying with an incredible group of heroes and I can't wait to go get this job done.

CM: What does it mean, as mission commander, to have the safety — and the lives — of these amazing and history-making astronauts in your hands once you launch?

RW: It means everything to me.

CM: You and the crew are so incredibly accomplished in your own individual spaces. Yet when you get to NASA — as Christina Koch once told me — you're kind of learning anew. What are you learning now?

RW: When you look at our crew, our next step is to learn about the spacecraft that will be operating in deep space. It's a very capable, very redundant, robust machine. So we have to get in the classroom, we've got to learn about all the capabilities, but we also have to get out and see the workforce.

We'll be the first humans to ever ride on this vehicle. And there's a lot of unknowns. We have a lot of systems to test. Uh One was very successful.

We need to hit the books and then we need to get in the sim [simulator], we need to practice simulations, learn how we all operate together as a team and then learn about the failure modes of the vehicle, how we can work around to keep ourselves safe and keep the mission going. And then after that, I think we'll be ready to look at Florida — and head out to the moon.

CM: Do prior lunar flight commanders and icons — like Armstrong and Lovell — serve as role models? How about the astronaut network in general?

RW: I think we look at those legends as their heroes, but they are also friends. Those folks really gave their lives to our nation and when they landed on the moon for the first time. But the amazing part for us as younger astronauts is they're still heavily engaged in everything we do right now.

I talked to Jack [Harrrison] Schmitt just a few months ago. Dave Scott still comes by every time he can to talk about geologic processes on the moon. Like these guys are our friends. It's really, really neat.

Neil Armstrong was amazing. John Young was incredible — he led our office for a number of years. Those guys are heroes to us for sure. When you look at who has taught me the most about being an astronaut, it's the folks I flew with on my first mission. It's the folks that I've worked with in the astronaut office. Now, I've seen some exceptional examples of leadership and followership and both skills are critical to be an astronaut.

CM: You learned you'll be headed to the moon — the dream adventure of billions all over the world— in the most office kind of way, we hear.

RW: Uh yeah, we all goofed up [laughs]. We missed the meeting. The chief astronaut put a placeholder on my schedule for a different topic. I was actually at a doctor's office and the doctor just walked in. So, I missed the first part of the meeting and I was able to use Microsoft Teams and dial in towards the end.

When the camera popped up, I saw the chief astronaut — who I expected to see for my meeting. But then, I also saw Norm Knight, our director of flight operations. I also saw Victor Glover and Christina Koch. And I was like, ‘oh boy, I think I just missed something big here.’

CM: Well, we've all missed meetings. But this was big — like headed to the moon big.

RW: Right [laughs]. It turned out that both Christina and Victor also missed the beginning of the meeting. So, we all showed up in perfect harmony.

------

This article originally ran on CultureMap.

The history-making team was announced at Ellington Field near Johnson Space Center in Houston. Photo via LinkedIn

NASA names four astronauts heading to the moon at Houston event

ready for liftoff

NASA and the Canadian Space Agency announced the four astronauts who will be onboard the Artemis II mission around the moon yesterday at an event at Ellington Field near NASA’s Johnson Space Center in Houston.

The 10-day mission is slated to put the first woman and the first person of color on the moon.

“For the first time in more than 50 years, these individuals – the Artemis II crew – will be the first humans to fly to the vicinity of the Moon. Among the crew are the first woman, first person of color, and first Canadian on a lunar mission, and all four astronauts will represent the best of humanity as they explore for the benefit of all,” says JSC Director Vanessa Wyche. “This mission paves the way for the expansion of human deep space exploration and presents new opportunities for scientific discoveries, commercial, industry and academic partnerships and the Artemis Generation.”

The crew assignments include:

  • Commander Reid Wiseman, who has logged more than 165 days in space in two trips. He previously served as a flight engineer aboard the International Station and most recently served as chief of the Astronaut Office from December 2020 until November 2022.
  • Pilot Victor Glover, who served as pilot on NASA’s SpaceX Crew-1 mission in 2021. This will be his second trip to space.
  • Mission Specialist 1 Christina Hammock Koch, who set the record for longest single spaceflight by a woman with a total of 328 days in space and participated in the first all-female spacewalks. This will be her second flight into space.
  • Mission Specialist 2 Jeremy Hansen, representing Canada. Hansen is a colonel in the Canadian Armed Forces and former fighter pilot and has served as Capcom in NASA's Mission Control Center at Johnson Space Center. He was the first Canadian to lead a NASA astronaut class. This will be his first flight into space.

Meet the four astronauts who will return humans to the moon. Photo courtesy of NASA

“NASA astronauts Reid Wiseman, Victor Glover, and Christina Hammock Koch, and CSA astronaut Jeremy Hansen, each has their own story, but, together, they represent our creed: E pluribus unum – out of many, one," NASA Administrator Bill Nelson said. "Together, we are ushering in a new era of exploration for a new generation of star sailors and dreamers–the Artemis Generation.”

Artemis II is slated to build upon the uncrewed Artemis I mission that was completed in December. The crew will be NASA's first to aboard the agency's deep space rocket, the Space Launch System, and Orion spacecraft. They will test the spacecrafts' systems to ensure they operate as planned for humans in deep space before setting course for the moon.

NASA's Artemis program collaborates with commercial and international partners with the goal of establishing a long-term presence on the moon. Lessons learned from the missions are planned to be used to send the first astronauts to Mars.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice team keeps CO2-to-fuel devices running 50 times longer in new study

Bubbling Up

In a new study published in the journal Science, a team of Rice University researchers shared findings on how acid bubbles can improve the stability of electrochemical devices that convert carbon dioxide into useful fuels and chemicals.

The team led by Rice associate professor Hoatian Wang addressed an issue in the performance and stability of CO2 reduction systems. The gas flow channels in the systems often clog due to salt buildup, reducing efficiency and causing the devices to fail prematurely after about 80 hours of operation.

“Salt precipitation blocks CO2 transport and floods the gas diffusion electrode, which leads to performance failure,” Wang said in a news release. “This typically happens within a few hundred hours, which is far from commercial viability.”

By using an acid-humidified CO2 technique, the team was able to extend the operational life of a CO2 reduction system more than 50-fold, demonstrating more than 4,500 hours of stable operation in a scaled-up reactor.

The Rice team made a simple swap with a significant impact. Instead of using water to humidify the CO2 gas input into the reactor, the team bubbled the gas through an acid solution such as hydrochloric, formic or acetic acid. This process made more soluble salt formations that did not crystallize or block the channels.

The process has major implications for an emerging green technology known as electrochemical CO2 reduction, or CO2RR, that transforms climate-warming CO2 into products like carbon monoxide, ethylene, or alcohols. The products can be further refined into fuels or feedstocks.

“Using the traditional method of water-humidified CO2 could lead to salt formation in the cathode gas flow channels,” Shaoyun Hao, postdoctoral research associate in chemical and biomolecular engineering at Rice and co-first author, explained in the news release. “We hypothesized — and confirmed — that acid vapor could dissolve the salt and convert the low solubility KHCO3 into salt with higher solubility, thus shifting the solubility balance just enough to avoid clogging without affecting catalyst performance.”

The Rice team believes the work can lead to more scalable CO2 electrolyzers, which is vital if the technology is to be deployed at industrial scales as part of carbon capture and utilization strategies. Since the approach itself is relatively simple, it could lead to a more cost-effective and efficient solution. It also worked well with multiple catalyst types, including zinc oxide, copper oxide and bismuth oxide, which are allo used to target different CO2RR products.

“Our method addresses a long-standing obstacle with a low-cost, easily implementable solution,” Ahmad Elgazzar, co-first author and graduate student in chemical and biomolecular engineering at Rice, added in the release. “It’s a step toward making carbon utilization technologies more commercially viable and more sustainable.”

A team led by Wang and in collaboration with researchers from the University of Houston also recently shared findings on salt precipitation buildup and CO2RR in a recent edition of the journal Nature Energy.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Houston foundation grants $27M to support Texas chemistry research

fresh funding

Houston-based The Welch Foundation has doled out $27 million in its latest round of grants for chemical research, equipment and postdoctoral fellowships.

According to a June announcement, $25.5 million was allocated for the foundation's longstanding research grants, which provide $100,000 per year in funding for three years to full-time, regular tenure or tenure-track faculty members in Texas. The foundation made 85 grants to faculty at 16 Texas institutions for 2025, including:

  • Michael I. Jacobs, assistant professor in the chemistry and biochemistry department at Texas State University, who is investigating the structure and thermodynamics of intrinsically disordered proteins, which could "reveal clues about how life began," according to the foundation.
  • Kendra K. Frederick, assistant professor in the biophysics department at The University of Texas Southwestern Medical Center, who is studying a protein linked to Parkinson’s disease.
  • Jennifer S. Brodbelt, professor in chemistry at The University of Texas at Austin, who is testing a theory called full replica symmetry breaking (fullRSB) on glass-like materials, which has implications for complex systems in physics, chemistry and biology.

Additional funding will be allocated to the Welch Postdoctoral Fellows of the Life Sciences Research Foundation. The program provides three-year fellowships to recent PhD graduates to support clinical research careers in Texas. Two fellows from Rice University and Baylor University will receive $100,000 annually for three years.

The Welch Foundation also issued $975,000 through its equipment grant program to 13 institutions to help them develop "richer laboratory experience(s)." The universities matched funds of $352,346.

Since 1954, the Welch Foundation has contributed over $1.1 billion for Texas-nurtured advancements in chemistry through research grants, endowed chairs and other chemistry-related ventures. Last year, the foundation granted more than $40.5 million in academic research grants, equipment grants and fellowships.

“Through funding basic chemical research, we are actively investing in the future of humankind,” Adam Kuspa, president of The Welch Foundation, said the news release. “We are proud to support so many talented researchers across Texas and continue to be inspired by the important work they complete every day.”

New Houston biotech co. developing capsules for hard-to-treat tumors

biotech breakthroughs

Houston company Sentinel BioTherapeutics has made promising headway in cancer immunotherapy for patients who don’t respond positively to more traditional treatments. New biotech venture creation studio RBL LLC (pronounced “rebel”) recently debuted the company at the 2025 American Society of Clinical Oncology (ASCO) Annual Meeting in Chicago.

Rima Chakrabarti is a neurologist by training. Though she says she’s “passionate about treating the brain,” her greatest fervor currently lies in leading Sentinel as its CEO. Sentinel is RBL’s first clinical venture, and Chakrabarti also serves as cofounder and managing partner of the venture studio.

The team sees an opportunity to use cytokine interleukin-2 (IL-2) capsules to fight many solid tumors for which immunotherapy hasn't been effective in the past. “We plan to develop a pipeline of drugs that way,” Chakrabarti says.

This may all sound brand-new, but Sentinel’s research goes back years to the work of Omid Veiseh, director of the Rice Biotechnology Launch Pad (RBLP). Through another, now-defunct company called Avenge Bio, Veiseh and Paul Wotton — also with RBLP and now RBL’s CEO and chairman of Sentinel — invested close to $45 million in capital toward their promising discovery.

From preclinical data on studies in mice, Avenge was able to manufacture its platform focused on ovarian cancer treatments and test it on 14 human patients. “That's essentially opened the door to understanding the clinical efficacy of this drug as well as it's brought this to the attention of the FDA, such that now we're able to continue that conversation,” says Chakrabarti. She emphasizes the point that Avenge’s demise was not due to the science, but to the company's unsuccessful outsourcing to a Massachusetts management team.

“They hadn't analyzed a lot of the data that we got access to upon the acquisition,” explains Chakrabarti. “When we analyzed the data, we saw this dose-dependent immune activation, very specific upregulation of checkpoints on T cells. We came to understand how effective this agent could be as an immune priming agent in a way that Avenge Bio hadn't been developing this drug.”

Chakrabarti says that Sentinel’s phase II trials are coming soon. They’ll continue their previous work with ovarian cancer, but Chakrabarti says that she also believes that the IL-2 capsules will be effective in the treatment of endometrial cancer. There’s also potential for people with other cancers located in the peritoneal cavity, such as colorectal cancer, gastrointestinal cancer and even primary peritoneal carcinomatosis.

“We're delivering these capsules into the peritoneal cavity and seeing both the safety as well as the immune activation,” Chakrabarti says. “We're seeing that up-regulation of the checkpoint that I mentioned. We're seeing a strong safety signal. This drug was very well-tolerated by patients where IL-2 has always had a challenge in being a well-tolerated drug.”

When phase II will take place is up to the success of Sentinel’s fundraising push. What we do know is that it will be led by Amir Jazaeri at MD Anderson Cancer Center. Part of the goal this summer is also to create an automated cell manufacturing process and prove that Sentinel can store its product long-term.

“This isn’t just another cell therapy,” Chakrabarti says.

"Sentinel's cytokine factory platform is the breakthrough technology that we believe has the potential to define the next era of cancer treatment," adds Wotton.