The Rice Alliance for Technology and Entrepreneurship handed out awards to the founders of the most promising companies that pitched. Photo courtesy of Slyworks Photography/Rice Alliance

Nearly 100 energy tech startups pitched at the 19th annual Rice Alliance Energy Tech Venture Forum this week — and over a third of those companies are based in the Houston area.

At the conclusion of the event — which took place on Thursday, September 15, at Rice University, and included a day full of company pitches, panels, and thought leadership — 10 startups were deemed the most promising among their peers. The group was voted on by investors attending office hours ahead of the event.

The Rice Alliance for Technology and Entrepreneurship facilitated nearly 700 meetings between 70 investor groups and 90 ventures, according to the organization. The group of presenting companies included participants from Rice's Clean Energy Accelerator's first two cohorts.

Here are 10 of the energy tech industry's most promising companies — and the technology they are working on that's set to disrupt the status quo.

Arolytics

Based in Calgary and founded in 2018, Arolytics is a software company that specializes in emissions management, ESG performance, and regulatory compliance. The company's platform is able to save its users up to 40 percent of their associated measurement costs and emissions management.

Atargis Energy

Atargis Energy is based in Pueblo, Colorado, and is a a member of Rice's second cohort of its Clean Energy Accelerator. The company has developed a twin hydrofoil-based wave energy converter that creates electric power from ocean waves. The technology is paired with real-time sensors and machine learning to optimize power conversion.

Compact Membrane Systems

Based in Delaware, Compact Membrane Systems, is pioneering membrane systems for decarbonizing hard-to-abate chemical manufacturing and industrial carbon capturing. The technology has the potential to revolutionize the chemicals industry.

Dimensional Energy

Dimensional Energy, based in Ithaca, New York, is transforming carbon dioxide into sustainable aviation fuels and products at market competitive prices. The technology integrates carbon capture, electrolysis, and Fischer Tropsch synthesis.

Kanin Energy

Headquartered in Houston, Kanin Energy works with heavy Industry to turn their waste heat into a clean baseload power source. The platform also provides tools such as project development, financing, and operations.

Orbital Sidekick

Orbital Sidekick, based in San Francisco, is an intelligence and analytics company that specializes in remote detection of environmental hazards by way of hyperspectral satellites. The technology provides actionable insights for its customers.

Power to Hydrogen

Based in Columbus, Ohio, Power to Hydrogen has developed an AEM-based electrolysis technology that produces high pressure, high efficiency hydrogen at low cost via water and renewable energy.

Quino Energy

Another Clean Energy Accelerator Class 2 member, Quino Energy produces flow battery systems with over eight hours of energy storage. The batteries are cheaper than lithium-ion alternatives, as well as being safer and easier to scale.

STARS Technology

Based in Richland, Washington, STARS Technology Corp. is commercializing advanced micro-channel chemical process technology that originally was designed for NASA and the Department of Energy. The company's reactors and heat exchangers are compact, energy-efficient, and more.

Syzygy Plasmonics

Houston-based Syzygy Plasmonics is commercializing its light-reacting energy, which would greatly reduce carbon emissions in the chemical industry. The technology originated out of Rice University.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH receives $2.6M gift to support opioid addiction research and treatment

drug research

The estate of Dr. William A. Gibson has granted the University of Houston a $2.6 million gift to support and expand its opioid addiction research, including the development of a fentanyl vaccine that could block the drug's ability to enter the brain.

The gift builds upon a previous donation from the Gibson estate that honored the scientist’s late son Michael, who died from drug addiction in 2019. The original donation established the Michael C. Gibson Addiction Research Program in UH's department of psychology. The latest donation will establish the Michael Conner Gibson Endowed Professorship in Psychology and the Michael Conner Gibson Research Endowment in the College of Liberal Arts and Social Sciences.

“This incredibly generous gift will accelerate UH’s addiction research program and advance new approaches to treatment,” Daniel O’Connor, dean of the College of Liberal Arts and Social Sciences, said in a news release.

The Michael C. Gibson Addiction Research Program is led by UH professor of psychology Therese Kosten and Colin Haile, a founding member of the UH Drug Discovery Institute. Currently, the program produces high-profile drug research, including the fentanyl vaccine.

According to UH, the vaccine can eliminate the drug’s “high” and could have major implications for the nation’s opioid epidemic, as research reveals Opioid Use Disorder (OUD) is treatable.

The endowed professorship is combined with a one-to-one match from the Aspire Fund Challenge, a $50 million grant program established in 2019 by an anonymous donor. UH says the program has helped the university increase its number of endowed chairs and professorships, including this new position in the department of psychology.

“Our future discoveries will forever honor the memory of Michael Conner Gibson and the Gibson family,” O’Connor added in the release. “And I expect that the work supported by these endowments will eventually save many thousands of lives.”

CenterPoint and partners launch AI initiative to stabilize the power grid

AI infrastructure

Houston-based utility company CenterPoint Energy is one of the founding partners of a new AI infrastructure initiative called Chain Reaction.

Software companies NVIDIA and Palantir have joined CenterPoint in forming Chain Reaction, which is aimed at speeding up AI buildouts for energy producers and distributors, data centers and infrastructure builders. Among the initiative’s goals are to stabilize and expand the power grid to meet growing demand from data centers, and to design and develop large data centers that can support AI activity.

“The energy infrastructure buildout is the industrial challenge of our generation,” Tristan Gruska, Palantir’s head of energy and infrastructure, says in a news release. “But the software that the sector relies on was not built for this moment. We have spent years quietly deploying systems that keep power plants running and grids reliable. Chain Reaction is the result of building from the ground up for the demands of AI.”

CenterPoint serves about 7 million customers in Texas, Indiana, Minnesota and Ohio. After Hurricane Beryl struck Houston in July 2024, CenterPoint committed to building a resilient power grid for the region and chose Palantir as its “software backbone.”

“Never before have technology and energy been so intertwined in determining the future course of American innovation, commercial growth, and economic security,” Jason Wells, chairman, president and CEO of CenterPoint, added in the release.

In November, the utility company got the go-ahead from the Public Utility Commission of Texas for a $2.9 billion upgrade of its Houston-area power grid. CenterPoint serves 2.9 million customers in a 12-county territory anchored by Houston.

A month earlier, CenterPoint launched a $65 billion, 10-year capital improvement plan to support rising demand for power across all of its service territories.

---

This article originally appeared on our sister site, EnergyCapitalHTX.com.

Houston researchers develop material to boost AI speed and cut energy use

ai research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.