Sentinel BioTherapeutics is developing cytokine interleukin-2 (IL-2) capsules to fight many solid tumors. Photo via Getty Images.

Houston company Sentinel BioTherapeutics has made promising headway in cancer immunotherapy for patients who don’t respond positively to more traditional treatments. New biotech venture creation studio RBL LLC (pronounced “rebel”) recently debuted the company at the 2025 American Society of Clinical Oncology (ASCO) Annual Meeting in Chicago.

Rima Chakrabarti is a neurologist by training. Though she says she’s “passionate about treating the brain,” her greatest fervor currently lies in leading Sentinel as its CEO. Sentinel is RBL’s first clinical venture, and Chakrabarti also serves as cofounder and managing partner of the venture studio.

The team sees an opportunity to use cytokine interleukin-2 (IL-2) capsules to fight many solid tumors for which immunotherapy hasn't been effective in the past. “We plan to develop a pipeline of drugs that way,” Chakrabarti says.

This may all sound brand-new, but Sentinel’s research goes back years to the work of Omid Veiseh, director of the Rice Biotechnology Launch Pad (RBLP). Through another, now-defunct company called Avenge Bio, Veiseh and Paul Wotton — also with RBLP and now RBL’s CEO and chairman of Sentinel — invested close to $45 million in capital toward their promising discovery.

From preclinical data on studies in mice, Avenge was able to manufacture its platform focused on ovarian cancer treatments and test it on 14 human patients. “That's essentially opened the door to understanding the clinical efficacy of this drug as well as it's brought this to the attention of the FDA, such that now we're able to continue that conversation,” says Chakrabarti. She emphasizes the point that Avenge’s demise was not due to the science, but to the company's unsuccessful outsourcing to a Massachusetts management team.

“They hadn't analyzed a lot of the data that we got access to upon the acquisition,” explains Chakrabarti. “When we analyzed the data, we saw this dose-dependent immune activation, very specific upregulation of checkpoints on T cells. We came to understand how effective this agent could be as an immune priming agent in a way that Avenge Bio hadn't been developing this drug.”

Chakrabarti says that Sentinel’s phase II trials are coming soon. They’ll continue their previous work with ovarian cancer, but Chakrabarti says that she also believes that the IL-2 capsules will be effective in the treatment of endometrial cancer. There’s also potential for people with other cancers located in the peritoneal cavity, such as colorectal cancer, gastrointestinal cancer and even primary peritoneal carcinomatosis.

“We're delivering these capsules into the peritoneal cavity and seeing both the safety as well as the immune activation,” Chakrabarti says. “We're seeing that up-regulation of the checkpoint that I mentioned. We're seeing a strong safety signal. This drug was very well-tolerated by patients where IL-2 has always had a challenge in being a well-tolerated drug.”

When phase II will take place is up to the success of Sentinel’s fundraising push. What we do know is that it will be led by Amir Jazaeri at MD Anderson Cancer Center. Part of the goal this summer is also to create an automated cell manufacturing process and prove that Sentinel can store its product long-term.

“This isn’t just another cell therapy,” Chakrabarti says.

"Sentinel's cytokine factory platform is the breakthrough technology that we believe has the potential to define the next era of cancer treatment," adds Wotton.

Omid Veiseh from Rice University and Edward Ratner from the University of Houston have been named 2024 National Academy of Inventors fellows for their innovative contributions. Courtesy photos

2 Houston professors named as fellows for prestigious group of inventors

top innovators

The highest professional distinction awarded to academic inventors, the National Academy of Inventors, have elected two fellows from Rice University and the University of Houston for its 2024 class.

Edward Ratner, computer information systems lecturer in the Department of Information Science Technology at the University of Houston’s Cullen College of Engineering, and Omid Veiseh, bioengineer at Rice University and director of the Biotech Launch Pad, were two of the 170 honorees representing 39 states and 12 countries.

The 2024 class will be honored and presented their medals on June 26 in Atlanta, Georgia by a senior official of the U.S. Patent and Trademark Office.

Ratner’s research includes artificial intelligence, machine learning, image analysis, video compression and video streaming, and has led to 40 patents currently. His inventions on adaptive video streaming assists the technology used today for streaming video over the internet. Ratner becomes the 40th UH faculty who is either a fellow or senior member of the NAI.

“Ed Ratner’s recognition as a Fellow of the NAI is a testament to his exceptional creativity, dedication and impact in advancing innovation,” Ramanan Krishnamoorti, vice president of energy and innovation at UH, says in a news release. “Here at the University of Houston, we take great pride in fostering a culture where visionary thinkers like Ed can thrive. This honor reflects not only his remarkable achievements but also the University’s commitment to shaping the future through groundbreaking research and invention.”

Veiseh is a current professor of bioengineering, a Cancer Prevention and Research Institute of Texas Scholar and faculty director of the Rice Biotech Launch Pad, which is a Houston-based accelerator that focuses on “expediting the translation of the university’s health and medical technology discoveries into cures,” according to a news release from Rice.

His research focuses on developing innovative treatments that involve combining synthetic biology, molecular engineering and advanced materials science. He also helped lead a $45 million project funded by the Advanced Research Projects Agency for Health (ARPA-H) to create implantable cancer monitoring and treatment devices.

“It is our mission to make sure that scientific and technological advancements are translated from laboratory discoveries into life-saving cures and products that have a real and enduring impact on patients’ lives,” said Veiseh in a news release. “I am honored to be recognized by this distinguished award and would like to thank my collaborators at Rice and elsewhere for working toward this shared goal of improving lives through better, more effective treatments.”

In

2023, UH’s Vincent Donnelly, Moores professor of Chemical and Biomolecular Engineering, and Christine Ehlig-Economides, Hugh Roy and Lillie Cranz Cullen Distinguished university chair of Petroleum Engineering, all received the Fellows honor. Other 2024 Texas-based fellows include Malcom Brenner from Baylor College of Medicine, Maria Croyle from The University of Texas at Austin, Jaime Grunlan from Texas A&M University, and more.
Established to rapidly build companies based on Rice University's portfolio of over 100 patents, RBL LLC is a new biotech venture creation studio based in Texas Medical Center Helix Park. Photo courtesy of Rice

Rice University opens biotech venture studio in TMC

rapidly scaling

In its mission to amplify and advance biotech innovation, Rice University has announced its latest initiative — a new lab focused on bringing life-saving medical technologies to commercialization.

Established to rapidly build companies based on Rice University's portfolio of over 100 patents, RBL LLC is a new biotech venture creation studio based in Texas Medical Center Helix Park. RBL comes on the heels of establishing the Rice Biotech Launch Pad, a biotech innovation accelerator that opened last year.

Paul Wotton, executive director of the Rice Biotech Launch Pad, co-founded RBL with his colleagues Omid Veiseh, Rice professor of bioengineering and faculty director of the Rice Biotech Launch Pad; Jacob Robinson, Rice professor of electrical and computer engineering; and Dr. Rima Chakrabarti, a physician scientist and venture capital investor with KdT Ventures.

“This is a pivotal moment for Houston and beyond,” Wotton, who serves as RBL’s managing partner, says in a news release from Rice. “Houston has rapidly emerged as a global life sciences powerhouse, blending cutting-edge research with early clinical applications at Rice and the city’s world-renowned hospital systems.

"Investors from across the nation are recognizing Houston’s potential, and with RBL, we’re building on that momentum," he continues. "We’ll not only amplify the work of the Rice Biotech Launch Pad but expand our reach across Texas, creating opportunities for biotech ventures statewide and driving growth for the biotech industry as a whole.”

Strategically located in TMC, RBL will collaborate with medical leaders, investors, corporations, and other players both in the same building and on the greater TMC campus.

“Leveraging Rice University’s Biotech Launch Pad breakthroughs and pairing it with the world-class translational infrastructure of TMC Helix Park well positions RBL to drive unprecedented advances in patient care,” William McKeon, president and CEO of the TMC, says in the release. “This partnership between academia, industry and health care is exactly what’s needed to transform medical discoveries into real-world solutions that improve lives globally.”

RBL is Rice's latest effort to bridge the gap between academia and biotech innovation, an effort led by Paul Cherukuri, Rice’s chief innovation officer, who reportedly spearheaded development of the new initiative.

“RBL is a game-changer for Rice, Houston and the global biotech community,” Cherukuri adds. “This venture not only accelerates the commercialization of our innovations but also sets a blueprint for other universities looking to maximize the real-world impact of their discoveries. By combining scientific expertise with entrepreneurial support from Day Zero together with strategic clinical partnerships in the TMC, we’re creating a model for driving large-scale biotech innovation that universities everywhere should aspire to replicate.”

Since the Rice Biotech Launch Pad was established, Motif Neurotech closed its series A round with an oversubscribed $18.75 million, the hub secured a $34.9 million grant, and a “living pharmacy” founded at the Launch Pad received industry validation.

“RBL provides a powerful platform to translate high-impact scientific discoveries into therapies that will dramatically improve patient outcomes,” Veiseh says. “Our goal is to rapidly bring Rice’s pioneering research into the clinic, delivering life-saving solutions to patients around the world.”

Rice’s Biotech Launch Pad will lead the effort to commercialize the device. Photo courtesy Rice University

Rice researchers secure $35M federal grant to advance medical device technology

big money

Rice University has secured part of a nearly $35 million federal grant aimed at commercializing a bioelectric implant for treatment of type 2 diabetes and obesity.

The federal Advanced Research Projects Agency for Health awarded the $34.9 million grant to Rice and several other universities.

Rice’s Biotech Launch Pad will lead the effort to commercialize the self-contained, implantable Rx On-site Generation Using Electronics (ROGUE) device. ROGUE houses cells that are engineered to produce type 2 diabetes and obesity therapies in response to patients’ needs.

Carnegie Mellon University leads the team of researchers handling development and testing of ROGUE, which acts as a “living pharmacy” designed to make biologic drugs available on demand in a patient’s body.

The ROGUE initiative aims to keep the cost of this treatment significantly below the cost of other biologics-based treatments.

“ROGUE’s innovative design combines efficient biological manufacturing, long-term durability, and patient-friendly features that have the potential to transform the landscape of biologics delivery,” Omid Veiseh, professor of bioengineering and faculty director of the Rice Biotech Launch Pad, says in a news release.

Paul Wotton, an in-house entrepreneur at the university and executive director of the Rice accelerator, is helping guide ROGUE toward becoming an independent company.

“With the Biotech Launch Pad, our goal is venture creation in parallel to the groundbreaking research at Rice and its collaborating institutions,” Wotton says.

Omid Veiseh is professor of bioengineering and faculty director of the Rice Biotech Launch Pad. Photo courtesy Rice University

The two new awardees are LymphGuide and HEXASpec, which were selected from 26 applications. Each company received an $100,000 grant. Photo courtesy of The Ion

2 lab-stage Houston startups receive fresh funding from Rice University grant program

cashing in on innovation

Rice University has doled out another batch of grants from its program supporting lab-based innovations.

The One Small Step Grant, which was announced a year ago and gave out its first grants in February, was established to fund Rice-founded, lab-stage projects on their path to commercialization

“The One Small Step Grant invites applications from students and faculty who are tackling some of the world’s most pressing challenges and preparing to bring their innovative technologies to market,” Nafisa Istami, innovation manager at Rice, says in a news release. “We received highly competitive applications from across campus, truly showcasing the growing momentum of technology innovation happening at Rice.”

The two new awardees are LymphGuide and HEXASpec, which were selected from 26 applications. Each company received an $100,000 grant.

LymphGuide was developed by Martha Fowler in Rice professor Omid Veiseh’s lab. The hydrogel platform is a customizable alginate that's combined with an engineered cell therapy to aid in lymphatic cell regrowth, initially targeting the treatment and prevention of lymphedema.

"We are profoundly grateful to the One Small Step Grant for supporting our vision to treat lymphedema,” says Martha Fowler, cofounder of LymphGuide. “This funding will propel our biotechnology into pre-clinical evaluation to make a meaningful impact in scientific research and for people suffering from lymphatic disease.” Fowler is also an active contributor in the Rice entrepreneurship ecosystem and an Liu Idea Lab of Innovation and Entrepreneurship Innovation Fellows Cohort 2 member.

Led by by Tianshu Zhai in Rice professor Jun Lou’s lab, HEXASpec develops inorganic fillers and molding compounds for next-generation chip packaging. Zhai is also one of the Liu Idea Lab of Innovation and Entrepreneurship Innovation Fellows.

“We are thrilled to receive the One Small Step Grant from Rice Innovation,” says Tianshu Zhai, cofounder of HEXASpec. “This support is crucial for advancing HEXASpec and signifies the strong backing of the Rice entrepreneurship community. We’re grateful for the opportunity to develop our technology with such robust support.”

The next round of grant opportunities will open next month with an online application process.

“The One Small Step Grant program is a demonstration of Rice’s commitment to supporting the commercialization of Rice technologies,” says Adrian Trömel, associate vice president of Innovation Strategy and Investments. “Each cycle further highlights the impactful work of Rice students and faculty to solve global problems across industries.”

“This breakthrough technology has the potential to reshape the landscape of disease treatment and the future of research and development in the field of cell-based therapies." Photo via Getty Images

Rice lab cooks up breakthrough 'living pharmacy' research for potential cell therapy treatment

biotech innovation

Rice University’s Biotech Launchpad has created an electrocatalytic on-site oxygenator, or ecO2, that produces oxygen intended to keeps cells alive. The device works inside an implantable “living pharmacy,” which the Rice Biotech Launch Pad team believes will one day be able to administer and regulate therapeutics within a patient’s body.

Last week, Rice announced a peer-reviewed publication in Nature Communications detailing the development of the novel rechargeable device. The study is entitled “Electrocatalytic on-site oxygenation for transplanted cell-based-therapies.”

How will doctors use the “living pharmacy?” The cell-based therapies implanted could treat conditions that include endocrine disorders, autoimmune syndromes, cancers and neurological degeneration. One major challenge standing in the way of bringing the technology beyond the theoretical has been ensuring the survival of cells for extended periods, which is necessary to create effective treatments. Oxygenation of the cells is an important component to keeping them alive and healthy and the longer they remain so, the longer the therapeutics will be helpful.

Other treatments to deliver oxygen to cells are ungainly and more limited in terms of oxygen production and regulation. According to Omid Veiseh, associate professor of bioengineering and faculty director of the Rice Biotech Launch Pad, oxygen generation is achieved with the ecO2 through water splitting that is precisely regulated using a battery-powered, wirelessly controlled electronic system. New versions will have wireless charging, which means it could last a patient’s entire lifetime.

“Cell-based therapies could be used for replacing damaged tissues, for drug delivery or augmenting the body’s own healing mechanisms, thus opening opportunities in wound healing and treatments for obesity, diabetes and cancer, for example. Generating oxygen on site is critical for many of these ‘biohybrid’ cell therapies: We need many cells to have sufficient production of therapeutics from those cells, thus there is a high metabolic demand. Our approach would integrate the ecO2 device to generate oxygen from the water itself,” says Jonathan Rivnay of Northwestern University, who co-led the study with Tzahi Cohen-Karni of Carnegie Mellon University (CMU).

The study’s co-first authors are Northwestern’s Abhijith Surendran and CMU’s Inkyu Lee.

Northwestern leads the collaboration with Rice to produce therapeutics onsite within the device. The research supports a Defense Advanced Research Projects Agency (DARPA) cooperative agreement worth up to $33 million to develop the implantable “living pharmacy” to control the human body’s sleep and wake cycles.

“This breakthrough technology has the potential to reshape the landscape of disease treatment and the future of research and development in the field of cell-based therapies. We are working toward advancing this technology into the clinic to bring it one step closer to those in need,” says Veiseh.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston foundation grants $27M to support Texas chemistry research

fresh funding

Houston-based The Welch Foundation has doled out $27 million in its latest round of grants for chemical research, equipment and postdoctoral fellowships.

According to a June announcement, $25.5 million was allocated for the foundation's longstanding research grants, which provide $100,000 per year in funding for three years to full-time, regular tenure or tenure-track faculty members in Texas. The foundation made 85 grants to faculty at 16 Texas institutions for 2025, including:

  • Michael I. Jacobs, assistant professor in the chemistry and biochemistry department at Texas State University, who is investigating the structure and thermodynamics of intrinsically disordered proteins, which could "reveal clues about how life began," according to the foundation.
  • Kendra K. Frederick, assistant professor in the biophysics department at The University of Texas Southwestern Medical Center, who is studying a protein linked to Parkinson’s disease.
  • Jennifer S. Brodbelt, professor in chemistry at The University of Texas at Austin, who is testing a theory called full replica symmetry breaking (fullRSB) on glass-like materials, which has implications for complex systems in physics, chemistry and biology.

Additional funding will be allocated to the Welch Postdoctoral Fellows of the Life Sciences Research Foundation. The program provides three-year fellowships to recent PhD graduates to support clinical research careers in Texas. Two fellows from Rice University and Baylor University will receive $100,000 annually for three years.

The Welch Foundation also issued $975,000 through its equipment grant program to 13 institutions to help them develop "richer laboratory experience(s)." The universities matched funds of $352,346.

Since 1954, the Welch Foundation has contributed over $1.1 billion for Texas-nurtured advancements in chemistry through research grants, endowed chairs and other chemistry-related ventures. Last year, the foundation granted more than $40.5 million in academic research grants, equipment grants and fellowships.

“Through funding basic chemical research, we are actively investing in the future of humankind,” Adam Kuspa, president of The Welch Foundation, said the news release. “We are proud to support so many talented researchers across Texas and continue to be inspired by the important work they complete every day.”

How Houston's innovation sector fared in 2025 Texas legislative session

That's a Wrap

The Greater Houston Partnership is touting a number of victories during the recently concluded Texas legislative session that will or could benefit the Houston area. They range from billions of dollars for dementia research to millions of dollars for energy projects.

“These wins were only possible through deep collaboration, among our coalition partners, elected officials, business and community leaders, and the engaged members of the Partnership,” according to a partnership blog post. “Together, we’ve demonstrated how a united voice for Houston helps drive results that benefit all Texans.”

In terms of business innovation, legislators carved out $715 million for nuclear, semiconductor, and other economic development projects, and a potential $1 billion pool of tax incentives through 2029 to support research-and-development projects. The partnership said these investments “position Houston and Texas for long-term growth.”

Dementia institute

One of the biggest legislative wins cited by the Greater Houston Partnership was passage of legislation sponsored by Sen. Joan Huffman, a Houston Republican, to provide $3 billion in funding over 10 years for the Dementia Prevention and Research Institute of Texas. Voters will be asked in November to vote on a ballot initiative that would set aside $3 billion for the new institute.

The dementia institute would be structured much like the Cancer Prevention and Research Institute of Texas (CPRIT), a state agency that provides funding for cancer research in the Lone Star State. Since its founding in 2008, CPRIT has awarded nearly $3.9 billion in research grants.

“By establishing the Dementia Prevention and Research Institute of Texas, we are positioning our state to lead the charge against one of the most devastating health challenges of our time,” Huffman said. “With $3 billion in funding over the next decade, we will drive critical research, develop new strategies for prevention and treatment, and support our healthcare community. Now, it’s up to voters to ensure this initiative moves forward.”

More than 500,000 Texans suffer from some form of dementia, including Alzheimer’s disease, according to Lt. Gov. Dan Patrick.

“With a steadfast commitment, Texas has the potential to become a world leader in combating [dementia] through the search for effective treatments and, ultimately, a cure,” Patrick said.

Funding for education

In the K-12 sector, lawmakers earmarked an extra $195 million for Houston ISD, $126.7 million for Cypress-Fairbanks ISD, $103.1 million for Katy ISD, $80.6 million for Fort Bend ISD, and $61 million for Aldine ISD, the partnership said.

In higher education, legislators allocated:

     
  • $1.17 billion for the University of Houston College of Medicine, University of Texas Health Science Center at Houston, UT MD Anderson Cancer Center, and Baylor College of Medicine
  • $922 million for the University of Houston System
  • $167 million for Texas Southern University
  • $10 million for the Center for Biotechnology at San Jacinto College.

Infrastructure

In the infrastructure arena, state lawmakers:

     
  • Approved $265 million for Houston-area water and flood mitigation projects, including $100 million for the Lynchburg Pump Station
  • Created the Lake Houston Dredging and Maintenance District
  • Established a fund for the Gulf Coast Protection District to supply $550 million for projects to make the coastline and ship channel more resilient

"Nuclear power renaissance"

House Bill 14 (HB 14) aims to lead a “nuclear power renaissance in the United States,” according to Texas Gov. Greg Abbott’s office. HB 14 establishes the Texas Advanced Nuclear Energy Office, and allocates $350 million for nuclear development and deployment. Two nuclear power plants currently operate in Texas, generating 10 percent of the energy that feeds the Electric Reliability Council Texas (ERCOT) power grid.

“This initiative will also strengthen Texas’ nuclear manufacturing capacity, rebuild a domestic fuel cycle supply chain, and train the future nuclear workforce,” Abbott said in a news release earlier this year.

One of the beneficiaries of Texas’ nuclear push could be Washington, D.C.-based Last Energy, which plans to build 30 micro-nuclear reactors near Abilene to serve power-gobbling data centers across the state. Houston-based Pelican Energy Partners also might be able to take advantage of the legislation after raising a $450 million fund to invest in companies that supply nuclear energy services and equipment.

Reed Clay, president of the Texas Nuclear Alliance, called this legislation “the most important nuclear development program of any state.”

“It is a giant leap forward for Texas and the United States, whose nuclear program was all but dead for decades,” said Clay. “With the passage of HB 14 and associated legislation, Texas is now positioned to lead a nuclear renaissance that is rightly seen as imperative for the energy security and national security of the United States.”

---

A version of this article first appeared on EnergyCapitalHTX.com.

Microsoft partners with Rice University's OpenStax on AI teaching tool

group project

Rice University’s OpenStax and Microsoft are partnering to integrate the nonprofit’s content with the tech giant’s AI innovation, known as Learning Zone.

“At OpenStax, our mission is to make an amazing education accessible to all,” Richard G. Baraniuk, founder and director of OpenStax, said in a news release. “That’s why we’re excited to integrate our trustworthy, peer-reviewed content with Microsoft’s AI technology through the Microsoft Learning Zone. Together, we aim to help more instructors and their students access engaging, effective learning experiences in new and dynamic ways. We also share a strong commitment to the thoughtful and responsible application of AI to better ensure all learners can succeed.”

OpenStax is a provider of affordable instructional technologies and is also one of the world’s largest publishers of open educational resources (OER).

Microsoft Learning Zone promises to provide educators and students with “responsible AI technology and peer-reviewed educational content to support learning” on Microsoft Copilot+ PCs. Microsoft Learning Zone works by utilizing on-device AI to generate interactive lessons for students, and its integration with OpenStax content means educators can rely on OpenStax’s digital library of 80 openly licensed titles.

The goal is for educators to create effective and engaging learning experiences safely, thereby bypassing the need to source and vet content independently. Included is a library of ready-to-use lessons, opportunity for immediate feedback and differentiated learning. Educators will maintain control of instructional content and pedagogical strategies and will be able to update or edit lessons or activities prior to sharing them with students.

Other tools included in the Microsoft Learning Zone are additional languages, reading coaching, public speaking help, math and reading progress, and a partnership with the online quiz platform Kahoot!

OpenStax resources have been reported as used across 153 countries, and this current collaboration combines the power and potential of responsible AI usage in education with content that has been utilized by 13,569 K-12 schools and 71 percent of U.S. colleges and universities, according to Rice.

“Through our partnership with OpenStax, we’re combining the power of on-device AI in Copilot+ PCs with OpenStax’s trusted and diverse peer-reviewed content to help educators quickly create high-quality, personalized, engaging lessons,” Deirdre Quarnstrom, vice president of Microsoft Education, added in the news release. “We’re excited about how this collaboration will empower classrooms globally.”