Dr. Peter Hotez with Dr. Maria Elena Bottazzi. Photo courtesy of TMC

Houston vaccine scientist Dr. Peter Hotez can add one more prize to his shelf.

Hotez — dean of the National School of Tropical Medicine and professor of Pediatrics and Molecular Virology & Microbiology at Baylor College of Medicine, co-director of the Texas Children’s Center for Vaccine Development (CVD) and Texas Children’s Hospital Endowed Chair of Tropical Pediatrics — is no stranger to impressive laurels. In 2022, he was even nominated for a Nobel Peace Prize for his low-cost COVID vaccine.

His first big win of 2025 is this year’s Hill Prize, awarded by the Texas Academy of Medicine, Engineering, Science and Technology (TAMEST).

Hotez and his team were selected to receive $500,000 from Lyda Hill Philanthropies to help fund The Texas Virosphere Project. The endeavor was born to help create a predictive disease atlas relating to climate disasters. Because the climate crisis has ushered in changes to the distribution of diseases, including dengue, chikungunya, Zika, Chagas disease, typhus and tick-borne relapsing fever, it’s important to predict outbreaks before they become a menace.

Rice University researchers are collaborating with Hotez and his team on a project that combines climate science and metagenomics to access 3,000 insect genomes. The goal is to aid health departments in controlling disease and informing policy.

The Hill Prize, which is being awarded to six innovators for the first time, thanks to a $10 million commitment from the philanthropic organization, is intended to back ideas that are high-risk and high-reward. Each of the projects was chosen for its potential real-life impact on some of Texas's — and the world’s — most challenging situations. Hotez’s prize is the first Hill Prize to be given in the realm of public health. The additional winners are:

  • Hill Prize in Medicine: Kenneth M. Hargreaves, D.D.S., Ph.D., The University of Texas Health Science Center at San Antonio
  • Hill Prize in Engineering: Joan Frances Brennecke, Ph.D. (NAE), The University of Texas at Austin
  • Hill Prize in Biological Sciences: David J. Mangelsdorf, Ph.D. (NAM, NAS), UT Southwestern Medical Center
  • Hill Prize in Physical Sciences: James Chelikowsky, Ph.D., The University of Texas at Austin
  • Hill Prize in Technology: Robert De Lorenzo, M.D., EmergenceMed, LLC
Read about other Houston-area researchers recognized by TAMEST here.
Houston's Nobel Prize winner, Jim Allison, is the star of Breakthrough, which premieres on Independent Lens at 9 pm Monday, April 27, on PBS, PBS.org, and the PBS Video App. Photo via SXSW.com

Documentary featuring Houston Nobel Prize winner to air on PBS

to-watch list

Not all heroes wear capes. In fact, our current coronavirus heroes are donning face masks as they save lives. One local health care hero has a different disease as his enemy, and you'll soon be able to stream his story.

Dr. James "Jim" Allison won the 2018 Nobel Prize in Physiology or Medicine for his work in battling cancer by treating the immune system — rather than the tumor. Allison, who is the chair of Immunology and executive director of the Immunotherapy Platform at MD Anderson Cancer Center, has quietly and often, singularly, waged war with cancer utilizing this unique approach.

The soft-spoken trailblazer is the subject of an award-winning documentary, Jim Allison: Breakthrough, which will air on PBS and its streaming channels on Monday, April 27 at 9 pm (check local listings for channel information). Lauded as "the most cheering film of the year" by the Washington Post, the film follows Allison's personal journey to defeat cancer, inspired and driven by the disease killed his mother.

Breakthrough is narrated by Woody Harrelson and features music by Willie Nelson, adding a distinct hint of Texana. (The film was a star at 2019's South by Southwest film festival.) The documentary charts Alice, Texas native as he enrolls at the University of Texas, Austin and ultimately, cultivates an interest in T cells and the immune system — and begins to frequent Austin's legendary music scene. Fascinated by the immune system's power to protect the body from disease, Allison's research soon focuses on how it can be used to treat cancer.

Viewers will find Allison charming, humble, and entertaining: the venerable doctor is also an accomplished blues harmonica player. Director Bill Haney weaves Allison's personal story with the medical case of Sharon Belvin, a patient diagnosed with melanoma in 2004 who soon enrolled in Allison's clinical trials. Belvin has since been entirely cancer-free, according to press materials.

"We are facing a global health challenge that knows no boundaries or race or religion, and we are all relying on gifted and passionate scientists and healthcare workers to contain and ultimately beat this thing," said Haney, in a statement. "Jim Allison and the unrelenting scientists like him are my heroes – and I'll bet they become yours!"

Jim Allison: Breakthrough premieres on Independent Lens at 9 pm Monday, April 27, on PBS, PBS.org, and the PBS Video App.

------

This article originally ran on CultureMap.

Jim Allison, immunotherapy researcher at MD Anderson and Nobel Prize recipient, is the subject of a new film that premiered at SXSW. Photo courtesy of MD Anderson Cancer Center

Film about Nobel Prize-winning Houston scientist premieres at SXSW

Now showing

For most of his career, James Allison has been a cancer research wildcatter fighting an oftentimes lonely battle for the advancement of immunotherapy. The medical community has historically been skeptical of the science, but nonetheless Allison dedicated his life to developing a better treatment to the disease that has claimed so many lives — including his mother's.

Last year, Allison, the chair of Immunology and executive director of the Immunotherapy Platform at MD Anderson, won the 2018 Nobel Prize in medicine, and Breakthrough, a film about Allison's progression from early researcher to Nobel Prize recipient, premiered on March 9 at the 2019 SXSW Interactive festival.

But despite the Nobel Prize and the new film both validating the science to the public, Allison says there's a lot more work to be done in immunotherapy. Allison, his colleague, Padmanee Sharma, and the filmmaker for Breakthrough, Bill Haney, hosted a discussion at SXSW about the future of immunotherapy.

"It's a time of considerable optimism — and we're just at the beginning," says Allison.

The film focuses on the man behind the science — a 70-year-old, harmonica-playing researcher from small-town Alice, Texas. It's both an ode to Allison's career and a thought-provoking take on all the work left to be done in the industry.

Immunotherapy is the process of targeting one's immune system's T-cells, infection-fighting white blood cells, to attack cancer cells. Sharma, a fellow MD Anderson oncology expert and clinician, says their work has received clinical approvals for treating Melanoma, kidney cancer, lung cancer, and bladder cancer. The scientists are now focused on expanding that treatment to other cancer types and building upon the established platform they've created, while also making sure nothing comes in the way of the facts of the science.

"It really requires that we dedicate ourselves to the basic science, understanding it and educating people about it, so we don't allow the facts and science get muddied by things that are political or nonfactual," Sharma says.

In a lot of ways, this is what Breakthrough has been able to do — communicate the facts on a platform where anyone can understand the science.

"We have a revolution on our hands, and thankfully we have people like Bill who can really tell the story well, because maybe as a scientist and a clinician, we're not always equally talented on telling the story to laypeople," Sharma says.

Moving forward, Allison says he's focused on finding out why the treatment fails in some instances, and he's determined to progress immunotherapy's success rate from the 20 to 40 percent rate he says he sees it at now to 100 percent.

"We've got all the basic tools, and we know what the main issues are," Allison says. "There's still a lot to do, but we need to be smart and do fact-based and mechanism-based combinations."

Jim Allison's groundbreaking work with T cells helped him net the award. Photo courtesy of MD Anderson Cancer Center

Houston scientist wins Nobel Prize for breakthrough cancer treatment

Research Recognition

A University of Texas MD Anderson Cancer Center scientist has been lauded for his cancer research. Jim Allison, Ph.D., was announced as the recipient of the 2018 Nobel Prize in Physiology or Medicine on October 1.

Allison, who is the chair of Immunology and executive director of the Immunotherapy Platform, is the first MD Anderson scientist to receive the world's most coveted award for discoveries in the fields of life sciences and medicine. Allison won for his work in launching an effective new way to attack cancer by treating the immune system rather than the tumor, according to a release.

"I'm honored and humbled to receive this prestigious recognition," Allison says in a statement. "A driving motivation for scientists is simply to push the frontiers of knowledge. I didn't set out to study cancer, but to understand the biology of T cells, these incredible cells to travel our bodies and work to protect us."

Allison shares the award with Tasuku Honjo, M.D., Ph.D., of Kyoto University in Japan. When announcing the honor, the Nobel Assembly of Karolinska Institute in Stockholm noted in a statement that "stimulating the ability of our immune system to attack tumor cells, this year's Nobel Prize laureates have established an entirely new principle for cancer therapy."

The prize recognizes Allison's basic science discoveries on the biology of T cells, the adaptive immune system's soldiers, and his invention of immune checkpoint blockade to treat cancer. According to MD Anderson, Allison's crucial insight was to block a protein on T cells that acts as a brake on their activation, freeing the T cells to attack cancer. He developed an antibody to block the checkpoint protein CTLA-4 and demonstrated the success of the approach in experimental models.

Allison's work led to the development of the first immune checkpoint inhibitor drug which would become the first to extend the survival of patients with late-stage melanoma. Follow-up studies show 20 percent of those treated live for at least three years, with many living for 10 years and beyond, unprecedented results, according to the cancer center.

"Jim Allison's accomplishments on behalf of patients cannot be overstated," says MD Anderson president Peter WT Pisters, M.D., in a statement. "His research has led to life-saving treatments for people who otherwise would have little hope. The significance of immunotherapy as a form of cancer treatment will be felt for generations to come."

"I never dreamed my research would take the direction it has," Allison adds. "It's a great, emotional privilege to meet cancer patients who've been successfully treated with immune checkpoint blockade. They are living proof of the power of basic science, of following our urge to learn and to understand how things work."

---

This story originally appeared on CultureMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston universities launch summer 2025 accelerators for student ventures

summer session

OwlSpark, a startup and small business accelerator for Rice University-affiliated ventures, has named the latest 11 companies to its program that focus on challenges across technology, health care, consumer products and other sectors. The program is hosted in tandem with the University of Houston’s RED Labs and will take place at the Ion.

The early-stage accelerator runs for 12 weeks and culminates at The Bayou Startup Showcase on July 31.

According to a news release from Rice, “the accelerator cultivates a vibrant environment where founders are empowered to build, test, and scale their ideas in a setting built for entrepreneurship.”

The program is divided into two tracks: one for high-growth tech startups and another for small businesses.

The latest OwlSpark class includes:

  • Web and mobile platform EasilyBEE, which boosts family and community engagement in K-12 schools
  • Diagnos, a wearable-integrated wellness platform that monitors health and prevents injuries in college athletes
  • Johnnie, an AI-powered records management software for rural and midsize first responder agencies
  • JustKindHumility, which offers faith-based travel journals
  • Klix, whichautomates early-stage clinical trial management from document screening to AI-driven patient outreach and eligibility checks
  • Lizzy’s Gourmet Gains, which offers high-protein, flavor-forward dips and dressings
  • NextStep, an AI-powered multilingual assistant helping underserved communities navigate resources for health care
  • A catheter-integrated sensor device PeriShield, which detects early infection in peritoneal dialysis patients
  • Right Design, which connects creatives with vetted employers, mentors and projects via job matching and commissions
  • UCoreAlly, which provides business support for biotech startups in marketing, business development, customer support, human resources and accounting
  • Ultrasound-based ablation system VentriTech that treats ventricular arrhythmias

The Owl Spark accelerator has supported 229 founders and launched 104 ventures with participants raising more than $116 million in funding since 2013, according to Rice.

Tesla's robotaxi service 'tentatively' to launch in Austin in June, Musk says

Tesla Talk

Elon Musk says Tesla is “tentatively” set to begin providing robotaxi service in Austin on June 22.

In a post on his X social media platform, Musk said the date could change because Tesla is “being super paranoid about safety.”

Investors, Wall Street analysts and Tesla enthusiasts have been anticipating the rollout of the driverless cabs since Musk said earlier this year that the service would launch in Austin sometime in June.

Last month, Musk told CNBC that the taxis will be remotely monitored at first and “geofenced” to certain areas of the city deemed the safest to navigate. He said he expected to initially run 10 or so taxis, increase that number rapidly and start offering the service in Los Angeles, San Antonio, San Francisco and other cities.

Musk has been promising fully autonomous, self-driving vehicles “next year” for a decade, but the pressure is on now as Tesla actually begins to operate a self-driving taxi service.

Sales of Tesla’s electric vehicles have sagged due to increased competition, the retooling of its most popular car, the Model Y, and the fallout from Musk’s turn to politics.

The Austin rollout also comes after Musk had a public blowup with President Donald Trump over the administration’s tax bill. Some analysts have expressed concern that Trump could retaliate by encouraging federal safety regulators to to step in at any sign of trouble for the robotaxis.