While most corporations should be optimizing their company cultures, energy companies specifically need to move the needle on driving forward innovative culture for its employees. Getty Images

The prevailing economic environment has made innovation essential to gaining a competitive edge in the oil and gas industry.

Global economic shifts and the unstable oil market have been considerable factors inhibiting the advancement of innovation in the oil and gas sector. Oil prices have not significantly increased in the past four to five years, while investors and Wall Street hold corporate executives accountable for capital discipline.

In light of these trends, corporate culture and innovation are key factors that hold the potential to drive novelty in the next upcycle. To bring value to shareholders, the oil and gas industry needs to nurture an environment that fosters a radically innovative culture to create new product lines and markets, unique ecosystems, product content, and processes.

Culture from the top down

Organizational culture is one of the essential dynamics that drive innovation. Employee behavior helps influence and promote the acceptance of innovation as a fundamental corporate value. Organizations are therefore admonished to concentrate on fostering an innovative culture that allows the growth of new ideas.

This culture needs to be created by deliberate action on the part of leaders of industry or by indirect measures such as composition and institutional policy directions. A model of innovative culture which translates into cultural transformation emerges as a result of this deliberate action and institutional policy directions.

Various studies over the years have examined innovative culture models focused on cultural characteristics or factors. A comprehensive, innovative culture model that incorporates cultural traits and their determinants is reviewed in this contemplative piece.

Execution  culture vs. innovative culture

In her book, "The Culture Map: Breaking Through the Invisible Boundaries of Global Business," Erin Meyer explains that "ambidextrous culture" is the concurrent search of flexibility and alignment at a business unit/sector which is linked to several organizational outcomes including improved performance and innovation.

This ambidextrous culture can be divided into two broad categories: Execution culture and innovative culture. Execution culture is a working environment that is more process- and task-driven to get things done. The oil and gas industry has typically favored the execution culture, where there is a central decision-maker at the head of the table. Research and recommendations on pertinent matters are typically presented to decision-makers who sit through a PowerPoint presentation. Subsequently, a decision is made based on the facts presented via PowerPoint presentation.

One critical demerit of this setup is that it usually leans towards low-risk conservative judgment. The executive lifestyle has worked in the past in the oil and gas industry due to the high fixed cost, and the "failure is unacceptable" approach in the industry.

With new technologies such as 3D printing, predictive analytics, machine learning, and deep learning, one can test some ideas or thoughts through rapid prototyping in a lab setting to test their hypothesis. Therefore, this type of culture as a sole approach to decision-making in the industry may need to be reconsidered.

Meanwhile, innovative culture is a work environment where leaders encourage and nurture unorthodox thinking in approaching problem solutions and applications. If the energy industry leaned more toward this style of culture, it would help foster innovation and accelerate the innovation landscape in the industry.

Innovative culture is a more design-oriented approach that generates a large pool of options and also incorporates a visual thinking framework. It enhances a creative mode for the audience, and everybody in the company ends up being a decision-maker. This type of culture fosters open innovation, eliminates the fear of expression, and pushes for more collaboration and creativity in the ecosystem.

According to a recent survey done by Accenture Strategy, 76 percent of leaders say they regularly empower employees to be innovative, while only 42 percent of employees agree. This shows an apparent disparity in more than the perceptions of employers versus employees and the belief that innovative culture is not promoted by middle management. This barrier can be broken down by instituting and enforcing an innovative culture.

Staying agile in a transforming world

The world has changed, and it will continue to transform. Various factors are disrupting traditional methods of business management across the globe, and organizational behavior is being impacted significantly. For an organization to be competitive globally, it requires innovation and creativity.

The rate at which businesses are facing competition requires agility. Employees are pressured to give their best and to come up with new ideas at a level even beyond some of history's greatest minds. For many, uncertainty and insecurity abounds. The fear of being made redundant and a resulting lack of trust prevents creativity among employees.

Trust, productive gameplay, and fun — critical components of an innovative culture — can spark creativity and increase global competitiveness. Due to the recent downturn, most teams are burdened with the same amount of work, which was meant for double or tripled their workforce and are still expected to perform at their peak capability. They need the right conducive environment to function.

Implementing action

While the energy industry should avoid trying to copy innovative practices from technology companies, oil and gas companies should review possible case studies that can be incorporated in fostering an acceptable culture for millennials to be attracted to the industry.

Presentation is important

Take a look at your marketing materials, for instance. Skip the stereotypical image of the macho oil guy on a rig operating the brake handle and showcase how the industry is adapting open innovation across sectors such as using predictive analytics and rapid prototyping to help design a safe working environment. Showcasing the conducive culture we experience in oil and gas, which challenges us to think outside the box and solve the world's energy problems will be an excellent way to create opportunities internally in companies and also attract and retain talent from different backgrounds and industries to help solve the world's energy problems.

Consider flexible work initiatives

To help establish and foster an innovative culture in oil and gas, the industry needs to embrace virtual and remote working environments, retraining and refresher courses to keep employees' skills relevant to solving problems, leaders setting a positive example on work-life balance and cutting down or avoiding long-distance travel via virtual meetings. Others essential pointers to consider are, giving employees the freedom to be themselves at work, leadership or management having a positive attitude towards failure, allowing remote work on days on which employees have personal commitments, networking events with company leaders scheduled during office hours, having an open channel for the report of sexual discrimination/harassment incident(s) to the company, among others.


I'd like to close with a quote from another influential book, "The Innovator's Dilemma," by Harvard Professor Clay Christensen. He writes, "When an organization's capabilities reside primarily in its people, changing to address new problems is relatively simple. However, when the capabilities have come to live in processes and values and especially when they have become embedded in culture, change has become extraordinarily complicated."

Establishing a uniquely innovative culture within the energy industry will be a great foundation going forward, for spurring progress in the oil and gas sector.

------

Nii A. Nunoo is senior associate and management consultant within Strategy and Energy Core Operations at KPMG.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston health care leader secures funding, milestones for latest initiatives across cancer, stroke, and more

news roundup

UTHealth Houston is making waves in many disciplines right now. From cancer to Alzheimer’s disease to stroke, the institution is improving outcomes for patients in new ways. Last week, UTHealth announced three exciting updates to its roster of accomplishments.

On October 8, UTHealth announced that it had received a $4.8 million grant from the National Cancer Institute, aimed at helping cancer survivors to continue their healing and enhancing primary care capacity. It will be put into action by UTHealth researchers working with eight community health centers around Texas that treat un- and underinsured patients. The initiative is called Project CASCADE, which stands for Community and Academic Synergy for Cancer Survivorship Care Delivery Enhancement.

“Project CASCADE focuses on how primary healthcare teams provide whole-person and coordinated care to underserved patients who have a history of cancer,” says Bijal Balasubramanian, professor of epidemiology and the Rockwell Distinguished Chair in Society and Health at UTHealth Houston School of Public Health, a multiple principal investigator of the study. “Primary care is uniquely suited to deliver whole-person and coordinated care for cancer survivors because, at its core, it prioritizes, personalizes and integrates healthcare for all conditions, not just the cancer.”

He continued by adding that 70 percent of cancer survivors live with other chronic conditions. The study will help by taking a holistic approach, rather than relegating people’s care to many different teams. Project CASCADE is one of only four National Cancer Institute-funded U01 grants that have been awarded to applicants focused on primary care for cancer survivors.

“Community health centers are the primary-care homes for patients who are underinsured or uninsured. In collaboration with community health center clinics, this study will develop a model of cancer survivorship care that can be disseminated and scaled up to be used across other health systems in Texas,” Balasubramanian says.

The intervention will use a designated care coordinator champion to oversee every aspect of patients’ health journey. Project ECHO will provide a backbone for treatment. That’s a telementoring strategy that improves primary care clinicians’ knowledge about post-cancer care, recognition and management of the effects of cancer and its treatments, and communication between oncologists and the primary care team. Project CASCADE is also a partnership between The University of Texas System institutions, including UT Southwestern Medical Center and The University of Texas MD Anderson Cancer Center.

The previous week, UTHealth made history by performing the first infusion in Houston of a newly FDA-approved drug, Kisunla, for the treatment of early symptomatic Alzheimer’s disease. The lucky recipient was 79-year-old Terrie Frankel. Though Kisunla is not a cure for Alzheimer’s, it has been noted to slow progress when administered early in the disease’s encroachment.

“Mrs. Frankel is the ideal patient for this treatment,” her doctor, David Hunter says. “We want to see patients as soon as they, or their family, notice the slightest trace of forgetfulness. The earlier the patient is in their Alzheimer’s disease, the more they benefit from treatments like Kisunla.”

UTHealth was one of the sites in the trial that charted the fact that Kisunla reduced amyloid plaques on average by 84 percent at 10 months after infusion. Frankel will receive her infusions monthly for the next 18 months, and her doctors will keep tabs on her progress with PET scans and use MRIs to scan for possible side effects. Next year, researchers will begin recruiting participants over the age of 55 with a family history of dementia, but no memory loss themselves, for a new trial, one of several currently working against Alzheimer’s that are taking place at UTHealth.

Stroke is no less of a worry to many patients. Last week, UTHealth received another grant that will improve the odds for patients who have had a stroke with the successful re-opening of a blocked vessel through endovascular surgery. The $2.5 million grant from the National Institute of Neurological Disorders and Stroke, part of the National Institutes of Health, will fund a five-year study that will include the creation of a machine-learning program that will be able to predict which stroke patients with large blood vessel blockages will benefit most from endovascular therapy.

The investigators will form a database of imaging and outcomes of patients whose blockages were successfully opened, called reperfusion, from three U.S. hospitals. This will allow them to identify clinical and imaging-based predictors of damage in the brain after reperfusion. From there, the deep-learning model will help clinicians to know which patients might go against the tenet that the sooner you treat a patient, the better.

“This is shaking our core of deciding who we treat, and when, and how, but also, how we are evaluating them? Our current methods of determining benefit with imaging are not good enough,” says principal investigator and associate professor in the Department of Neurology at McGovern Medical School at UTHealth Houston, Sunil Sheth.

And this is just some of the groundbreaking work taking place at UTHealth each day.

Houston plugs in as 3rd cheapest city in America for remote workers

report

Houston's bustling telework industry is earning a new reputation as one of the most affordable in the country. A recent study by online retailer The Perfect Rug has revealed Houston is the No. 3 cheapest U.S. city center for remote work.

The report ranked the top 10 largest U.S. cities based on population data, the number of coworking spaces and cafes per capita, statewide average internet speeds, average apartment rent prices, and more.

Houston falls third to the far west Texas city of El Paso (No. 1), and Austin (No. 2).

When it comes to finding the best place to work remotely, Houston has an abundance of options including coffee shops, coworking spaces, and local library branches. According to the report's data, there are about six coworking spaces and 16 cafes per capita in the city, but Houstonians know best that there is a much wider variety of places to work from "home" than whatever number a study determines.

The average internet speed in Texas is 425.9 mbps (megabits per second), which is the fourth-highest internet speed out of the six total states (and the District of Columbia) mentioned in the study. Pennsylvania, Washington, and Washington, D.C. all have faster average internet speeds, at 430.8, 451, and 473.8 mpbs, respectively.

The Perfect Rug also calculated the average costs for meals, coffee, and monthly rent in Houston:

  • $1,196 per month – Average apartment rent cost in central Houston
  • $15 per hour – Average cost for a desk at a coworking space
  • $18 – Average cost for a meal
  • $5.32 – Average cost for a coffee
Furthermore, Houston-based remote workers are technically saving on fuel costs compared to those who have to commute into the city daily for their jobs.A spokesperson for The Perfect Rug said Texas cities like El Paso, Austin, and Houston are far more popular for "budget-conscious" remote workers partially because rent costs are far lower in comparison to many other U.S. cities.

"On the other hand, cities like Washington, D.C., and Seattle, while more expensive, compensate with faster internet speeds and a higher density of workspaces, which can enhance the remote work experience," the spokesperson said. "Finding the right balance between cost and amenities is key for remote workers seeking both productivity and affordability."

Elsewhere in Texas, San Antonio ranked as the fifth most affordable city for teleworkers, followed by Dallas (No. 7).

The top 10 cheapest U.S. cities for remote workers are:

  • No. 1 – El Paso, Texas
  • No. 2 – Austin, Texas
  • No. 3 – Houston, Texas
  • No. 4 – Seattle, Washington
  • No. 5 – San Antonio, Texas
  • No. 6 – Washington, D.C.
  • No. 7 – Dallas, Texas
  • No. 8 – Denver, Colorado
  • No. 9 – Philadelphia, Pennsylvania
  • No. 10 – Nashville, Tennessee

------

This article originally ran on CultureMap.

SpaceX reaches milestone achievement with latest Starship rocket launch

science nonfiction

Texas-based SpaceX pulled off the boldest test flight yet of its enormous Starship rocket on Sunday, catching the returning booster back at the launch pad with mechanical arms.

A jubilant Elon Musk called it “science fiction without the fiction part.”

Towering almost 400 feet (121 meters), the empty Starship blasted off at sunrise from the southern tip of Texas near the Mexican border. It arced over the Gulf of Mexico like the four Starships before it that ended up being destroyed, either soon after liftoff or while ditching into the sea. The previous one in June had been the most successful until Sunday's demo, completing its flight without exploding.

This time, Musk, SpaceX's CEO and founder, upped the challenge for the rocket that he plans to use to send people back to the moon and on to Mars.

At the flight director's command, the first-stage booster flew back to the launch pad where it had blasted off seven minutes earlier. The launch tower's monstrous metal arms, dubbed chopsticks, caught the descending 232-foot (71-meter) stainless steel booster and gripped it tightly, dangling it well above the ground.

“The tower has caught the rocket!!” Musk announced via X. “Big step towards making life multiplanetary was made today.”

Company employees screamed in joy, jumping and pumping their fists into the air. NASA joined in the celebration, with Administrator Bill Nelson sending congratulations.

Continued testing of Starship will prepare the nation for landing astronauts at the moon’s south pole, Nelson noted. NASA’s new Artemis program is the follow-up to Apollo, which put 12 men on the moon more than a half-century ago.

“Folks, this is a day for the engineering history books,” SpaceX engineering manager Kate Tice said from SpaceX headquarters in Hawthorne, California.

“Even in this day and age, what we just saw is magic,” added company spokesman Dan Huot from near the launch and landing site. “I am shaking right now.”

It was up to the flight director to decide, in real time with a manual control, whether to attempt the landing. SpaceX said both the booster and launch tower had to be in good, stable condition. Otherwise, it was going to end up in the gulf like the previous ones. Everything was judged to be ready for the catch.

The retro-looking spacecraft launched by the booster continued around the world, soaring more than 130 miles (212 kilometers) high. An hour after liftoff, it made a controlled landing in the Indian Ocean, adding to the day's achievement. Cameras on a nearby buoy showed flames shooting up from the water as the spacecraft impacted precisely at the targeted spot and sank, as planned.

“What a day,” Huot said. “Let's get ready for the next one.”

The June flight came up short at the end after pieces came off. SpaceX upgraded the software and reworked the heat shield, improving the thermal tiles.

SpaceX has been recovering the first-stage boosters of its smaller Falcon 9 rockets for nine years, after delivering satellites and crews to orbit from Florida or California. But they land on floating ocean platforms or on concrete slabs several miles from their launch pads — not on them.

Recycling Falcon boosters has sped up the launch rate and saved SpaceX millions. Musk intends to do the same for Starship, the biggest and most powerful rocket ever built with 33 methane-fuel engines on the booster alone.

Musk said the captured Starship booster looked to be in good shape, with just a little warping of some of the outer engines from all the heat and aerodynamic forces. That can be fixed easily, he noted.

NASA has ordered two Starships to land astronauts on the moon later this decade. SpaceX intends to use Starship to send people and supplies to the moon and, eventually Mars.

___

The Associated Press Health and Science Department receives support from the Howard Hughes Medical Institute’s Science and Educational Media Group. The AP is solely responsible for all content.