Mielad Ziaee, a 20-year-old student at the University of Houston, was tapped for a unique National Institutes of Health program. Photo via UH.edu

A Houston-area undergraduate student has been tapped for a prestigious national program that pairs early-career investigators with health research professionals.

Mielad Ziaee was selected for the National Institutes of Health’s 2023-2024 All of Us Research Scholar Program, which connects young innovators with experts "working to advance the field of precision medicine," according to a statement from UH. Ziaee – a 20-year-old majoring in psychology and minoring in biology, medicine and society who plans to graduate in 2025 — plans to research how genomics, or the studying of a person's DNA, can be used to impact health.

“I’ll be one of the ones that define what this field of personalized, precision medicine will look like in the future,” Ziaee said in a statement. “It’s exciting and it’s a big responsibility that will involve engaging diverse populations and stakeholders from different systems – from researchers to health care providers to policymakers.”

Ziaee aims to become a physician who can use an understanding of social health conditions to guide his clinical practice. At a young age, he was inspired to go into the field by his family's own experience.

According to UH, Ziaee is the oldest child of Iranian American immigrants. He saw firsthand the challenges of how language and cultural barriers can impact patients' access to and level of care.

“I think a lot of people define health as purely biological, but a lot of other factors influence our well-being, such as mental health, financial health, and even access to good food, medical care and the internet,” he said in a statement. “I am interested in seeing the relationship among all these things and how they impact our health. So far, a lot of health policies and systems have not really looked beyond biology.”

"I want everyone to have an equal chance to access health care and take charge of their well-being. We need to have the systems in place that let people do that,” he added.

Ziaee is already on his way to helping Houston-based and national health systems and organizations make headway in this area.

He was named as a student regent on the UH System Board of Regents last year, sits on the board of the Houston chapter of the American Red Cross, and is an Albert Schweitzer Fellow.

Last year he was a Centers for Disease Control and Prevention John R. Lewis scholar, for which he presented his research project about predicting food insecurity in pediatric clinical settings and recommendations to improve the assessment based off his summer research with the Johns Hopkins University School of Medicine and the Kennedy Krieger Institute.

Prior to this, he completed a 10-week guided research experience using data visualization and predictive modeling techniques to assess food insecurity in the Third Ward.

“I just took every opportunity that came to me,” Ziaee said. “All my experiences connect with my central desire to increase health access and improve health care. I am very intentional about connecting the dots to my passion.”

Earlier this year, three UH student researchers were named among 16 other early-stage research projects at U.S. colleges and universities to receive a total of $17.4 million from the DOE's Office of Fossil Energy and Carbon Management (FECM). The projects were each awarded between about $750,000 to up to $1.5 million.

A research team housed out of the newly launched Rice Biotech Launch Pad received funding to scale tech that could slash cancer deaths in half. Photo via Rice University

Rice researchers score $45M from NIH for cancer-fighting tech

freshly funded

A research funding agency has deployed capital into a team at Rice University that's working to develop a technology that could cut cancer-related deaths in half.

Rice researchers received $45 million from the National Institutes of Health's Advanced Research Projects Agency for Health, or ARPA-H, to scale up development of a sense-and-respond implant technology. Rice bioengineer Omid Veiseh leads the team developing the technology as principal investigator.

“Instead of tethering patients to hospital beds, IV bags and external monitors, we’ll use a minimally invasive procedure to implant a small device that continuously monitors their cancer and adjusts their immunotherapy dose in real time,” he says in a news release. “This kind of ‘closed-loop therapy’ has been used for managing diabetes, where you have a glucose monitor that continuously talks to an insulin pump. But for cancer immunotherapy, it’s revolutionary.”

Joining Veiseh on the 19-person research project named THOR, which stands for “targeted hybrid oncotherapeutic regulation,” is Amir Jazaeri, co-PI and professor of gynecologic oncology at the University of Texas MD Anderson Cancer Center. The device they are developing is called HAMMR, or hybrid advanced molecular manufacturing regulator.

“Cancer cells are continually evolving and adapting to therapy. However, currently available diagnostic tools, including radiologic tests, blood assays and biopsies, provide very infrequent and limited snapshots of this dynamic process," Jazaeri adds. "As a result, today’s therapies treat cancer as if it were a static disease. We believe THOR could transform the status quo by providing real-time data from the tumor environment that can in turn guide more effective and tumor-informed novel therapies.”

With a national team of engineers, physicians, and experts across synthetic biology, materials science, immunology, oncology, and more, the team will receive its funding through the Rice Biotech Launch Pad, a newly launched initiative led by Veiseh that exists to help life-saving medical innovation scale quickly.

"Rice is proud to be the recipient of the second major funding award from the ARPA-H, a new funding agency established last year to support research that catalyzes health breakthroughs," Rice President Reginald DesRoches says. "The research Rice bioengineer Omid Veiseh is doing in leading this team is truly groundbreaking and could potentially save hundreds of thousands of lives each year. This is the type of research that makes a significant impact on the world.”

The initial focus of the technology will be on ovarian cancer, and this funding agreement includes a first-phase clinical trial of HAMMR for the treatment of recurrent ovarian cancer that's expected to take place in the fourth year of THOR’s multi-year project.

“The technology is broadly applicable for peritoneal cancers that affect the pancreas, liver, lungs and other organs,” Veiseh says. “The first clinical trial will focus on refractory recurrent ovarian cancer, and the benefit of that is that we have an ongoing trial for ovarian cancer with our encapsulated cytokine ‘drug factory’ technology. We'll be able to build on that experience. We have already demonstrated a unique model to go from concept to clinical trial within five years, and HAMMR is the next iteration of that approach.”

A Houston-based software startup received a multimillion-dollar grant from the National Institutes of Health for its work within neurophysiology. Getty Images

Data science startup based in Houston focus on neuroscience software nabs $3.78M grant

brain game

Armed with a nearly $3.8 million federal grant, a Houston startup aims to boost neuroscience research around the world.

Vathes LLC, a developer of data management software that collaborates with neuroscience research labs in North America and Europe, recently received the $3.78 million grant from the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative at the National Institutes of Health (NIH). That initiative is part of the National Institute of Neurological Disorders and Stroke.

Vathes says the NIH funding will enable the startup to ramp up its DataJoint Pipelines for Neurophysiology project. The project aims to make open-source software for data science and engineering available to researchers who specialize in neurophysiology, a branch of neuroscience that looks at how the nervous system functions. The pipeline project holds the promise of benefiting research in areas like autism, Alzheimer's disease, and amyotrophic lateral sclerosis (ALS, or Lou Gehrig's disease).

The project's principal investigator is Dimitri Yatsenko, vice president of research and development at Vathes. Technologically speaking, neuroscientists are playing catch-up with their counterparts in fields like astrophysics, genomics, and bioinformatics, according to Yatsenko.

Neuroscience "is undergoing a fast transformation in terms of moving toward much more data-centric, data-intensive, computation-intensive, and collaborative projects," Yatsenko says. This means that neuroscientists are "now finding themselves having to quickly adapt to an environment," he adds, "where they have to share big data and computations with their collaborators in very dynamic settings and perform them in a very fluid way."

Yatsenko says the NIH-funded project will help smaller research groups tap into the technical expertise of larger research labs.

Vathes' DataJoint Neuro platform and services, which help create so-called DataJoint pipelines, enable neuroscientists to streamline, analyze, and visualize complex data. Among its customers are Princeton University's Neuroscience Institute and Columbia University's Zuckerman Institute. The federally funded project will empower smaller labs to capitalize on existing DataJoint pipelines as ready-to-go turnkey packages, Yatsenko says.

In essence, Vathes' technology acts as a translator. Big research labs collect data in databases that can vary by computer language and platform. Through the Vathes setup, that data can be incorporated by a lab of any size into algorithmic, machine learning, and artificial intelligence mechanisms, regardless of the computer language or platform.

Edgar Walker, CEO of Vathes, says this simplifies the construction and use of databases, giving scientists "more room to focus on the logic of their data pipeline rather than on the physical implementation of it."

Founded in 2016, Vathes is housed at the Texas Medical Center's Innovation Institute. It employs 10 people. The startup previously received a $100,000 grant from the U.S. Defense Advanced Research Projects Agency (DARPA).

Yatsenko says the project backed by the $3.78 million NIH grant will propel the startup's growth, as it "gives us a big window of opportunity" to provide tools and services that support the startup's open-source software.

"As the NIH and other funding agencies are shifting a lot of their focus to collaborative projects that are distributed among multiple institutions," Walker says, "we've established a reputation as the company that can facilitate such research, be efficient, and actually be cost-effective as well, and make the projects very smooth."

"We expect to continue to grow this business at the same exponential rate," he adds. "We'll keep our fingers crossed and see how things go."


CEO Edgar Walker (left) and Dimitri Yatsenko, vice president of research and development, lead Houston-based Vathes. Photos courtesy of Vathes

Two Houston hospitals — Texas Children's Hospital and Baylor College of Medicine — have received funding from the National Institutes of Health. Photo by Dwight C. Andrews/Greater Houston Convention and Visitors Bureau

Houston researchers receive $3.2 million grant to enhance fetal monitoring technology

Fresh funds

Thousands of cases of fetal growth restriction occur annually that can lead to complications at birth. In order to get a better idea of condition and to develop better monitoring technology, the National Institutes of Health has granted $3.2 million to researchers at Baylor College of Medicine and Texas Children's Hospital.

The researchers are tasked with developing "an improved way to evaluate umbilical venous blood flow using 3D and Doppler ultrasound techniques" in small fetuses, according to a release from Baylor College of Medicine.

"Our research team will initially validate the accuracy and reproducibility of new 3D volume flow measurements and then develop corresponding reference ranges in normal pregnancies," says Dr. Wesley Lee, professor of obstetrics and gynecology at Baylor, in the release.

"Detailed observations of fetal growth, heart function, and circulatory changes will be made in over 1,000 small fetuses with estimated weights below the 10th percentile," Lee continues. "The results will be correlated with pregnancy outcomes to identify prenatal predictors of clinical problems in newborns."

The grant will fund a five-year investigation collaboration between the two Houston hospitals, as well as the University of Michigan, Perinatology Research Branch of the Eunice Kennedy Shriver National Institute of Child Health, and Human Development and GE Healthcare.

FGR is a condition that affects fetuses that are below the weight normal for their gesticular age — usually in the 10th percentile of weight or less, according to Stanford Children's Health. Underlying issues with placenta or umbilical cord can increase the risks of the condition and causes of FGR can range from blood pressure problems to drug and alcohol use.

Affected fetuses can be at risk of stillbirth or neonatal death. Babies that overcome FGR complications at birth are predisposed to developmental delay and the development of adult diseases such as obesity, diabetes, coronary artery disease, and stroke, according to the release.

According to Dr. Lee, identifying these FGR and at-risk fetuses can benefit their health in infancy as well as throughout their lives.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Texas Space Commission launches, Houston execs named to leadership

future of space

Governor Greg Abbott announced the Texas Space Commission, naming its inaugural board of directors and Texas Aerospace Research and Space Economy Consortium Executive Committee.

The announcement came at NASA's Johnson Space Center, and the governor was joined by Speaker Dade Phelan, Representative Greg Bonnen, Representative Dennis Paul, NASA's Johnson Space Center Director Vanessa Wyche, and various aerospace industry leaders.

According to a news release, the Texas Space Commission will aim to strengthen commercial, civil, and military aerospace activity by promoting innovation in space exploration and commercial aerospace opportunities, which will include the integration of space, aeronautics, and aviation industries as part of the Texas economy.

The Commission will be governed by a nine-member board of directors. The board will also administer the legislatively created Space Exploration and Aeronautics Research Fund to provide grants to eligible entities.

“Texas is home to trailblazers and innovators, and we have a rich history of traversing the final frontier: space,” Lieutenant Governor Dan Patrick says in a news release. “Texas is and will continue to be the epicenter for the space industry across the globe, and I have total confidence that my appointees to the Texas Space Commission Board of Directors and the Texas Aerospace Research and Space Economy Consortium Executive Committee will ensure the Texas space industry remains an international powerhouse for cutting-edge space innovation.”

TARSEC will independently identify research opportunities that will assist the state’s position in aeronautics research and development, astronautics, space commercialization, and space flight infrastructure. It also plans to fuel the integration of space, aeronautics, astronautics, and aviation industries into the Texas economy. TARSEC will be governed by an executive committee and will be composed of representatives of each higher education institution in the state.

“Since its very inception, NASA’s Johnson Space Center has been home to manned spaceflight, propelling Texas as the national leader in the U.S. space program,” Abbott says during the announcement. “It was at Rice University where President John F. Kennedy announced that the U.S. would put a man on the moon—not because it was easy, but because it was hard.

"Now, with the Texas Space Commission, our great state will have a group that is responsible for dreaming and achieving the next generation of human exploration in space," he continues. "Texas is the launchpad for Mars, innovating the technology that will colonize humanity’s first new planet. As we look into the future of space, one thing is clear: those who reach for the stars do so from the great state of Texas. I look forward to working with the Texas Space Commission, and I thank the Texas Legislature for partnering with industry and higher education institutions to secure the future of Texas' robust space industry."

The Houston-area board of directors appointees included:

  • Gwen Griffin, chief executive officer of the Griffin Communications Group
  • John Shannon, vice president of Exploration Systems at the Boeing Company
  • Sarah "Sassie" Duggleby, co-founder and CEO of Venus Aerospace
  • Kirk Shireman, vice president of Lunar Exploration Campaigns at Lockheed Martin
  • Dr. Nancy Currie-Gregg, director of the Texas A&M Space Institute

Additionally, a few Houstonians were named to the TARSEC committee, including:

  • Stephanie Murphy, CEO and executive chairman of Aegis Aerospace
  • Matt Ondler, president and former chief technology officer at Axiom Space
  • Jack “2fish” Fischer, vice president of production and operations at Intuitive Machines
  • Brian Freedman, president of the Bay Area Houston Economic Partnership and vice chairman of Wellby Financial
  • David Alexander, professor of physics and astronomy and director of the Rice Space Institute at Rice University

To see the full list of appointed board and committee members, along with their extended bios, click here.

City of Houston approves $13M for new security tech at renovated IAH​ terminal

hi, tech

A new terminal currently under construction at George Bush Intercontinental Airport just got the green light for new security technology.

This week, Houston City Council unanimously approved the funding for the new Mickey Leland International Terminal's security equipment. The Mickey Leland International Terminal Project is part of the $1.43 billion IAH Terminal Redevelopment Program, or ITRP, which is expected to be completed by early next year.

This new IAH International Terminal will feature an International Central Processor, or ICP, with state-of-the-art technology in a 17-lane security checkpoint — among the largest in the country — as well as ticket counters and baggage claim.

“Houston Airports strives to get passengers through TSA Security in 20 minutes or less. Today, we meet that goal at Bush Airport more than 90 percent of the time,” Jim Szczesniak, director of aviation for Houston Airports, says in a news release. “This investment in innovative technology will enhance our efficiency and ensure that our passengers have a world-class experience each time they visit our airports.”

Going through security at IAH is about to be smoother sailing. Rendering courtesy of Houston Airports

The funding approval came from two ordinances, and the first one appropriates $11.8 million from the Airports Improvement Fund to buy, service, install, and train staff on nine new automated screening lanes, called Scarabee Checkpoint Property Screening Systems, or CPSS.

Per the news release, each of these CCPS automated lanes "is capable of screening more than 100 additional people and bags/hour than existing equipment used today." Currently, Terminal D's TSA is using eight CPSS Lanes, so the additional nine lanes will bring the total to 17 lanes of security.

The other appropriates another $1.2 million from the Airports Improvement Fund to buy, install, maintain, and train staff on six new Advanced Imaging Technology Quick Personnel Security Scanners.

The new scanners, which don't require the traveler to raise their arms, "is capable of screening more than 100 additional people/hour than existing equipment used today," per the release.

“These new security screening machines are faster, have fewer false alarms and have improved detection rates, which creates a safer experience for our passengers and airlines,” Federal Security Director for TSA at IAH Juan Sanchez adds.

The Mickey Leland International Terminal originally opened in 1990 and is currently under renovation. Rendering courtesy of Houston Airports

Texas has the 5th highest health care costs in the nation, Forbes says

dollar signs

A new Forbes Advisor study shedding light on Americans' top financial worries has revealed Texas has the fifth highest health care costs in the nation.

Forbes Advisor's annual report compared all 50 states and Washington, D.C. across nine different metrics to determine which states have the most and least expensive health care costs in 2024.

Factors include the average annual deductibles and premiums for employees using single and family coverage through employer-provided health insurances and the percentage of adults who chose not to see a health care provider due to costs within the last year, among others. Each state was ranked based on its score out of a total 100 possible points.

Texas was No. 5 with a score of 91.38 points. North Carolina was No. 1, followed in order by South Dakota, Nebraska, and Florida.

According to Forbes, out-of-state families considering a move to the Lone Star State should be aware of the state's troubling statistics when it comes to family health care. More specifically, nearly 15 percent of Texas children had families who struggled to pay for their medical bills in the past 12 months, the highest percentage in the nation.

Furthermore, Texans have the highest likelihood in the U.S. to skip seeing a doctor because of cost. The report showed 16 percent of Texas adults chose not to see a doctor in the past 12 months due to the cost of health care.

"Unexpected medical bills and the cost of health care services are the top two financial worries for Americans this year, according to a recent KFF health tracking poll," the report said. "These financial fears have real-world consequences. The high cost of healthcare is leading some Americans to make tough choices—often at the expense of their health."

In the category for the percentage of adults who reported 14 or more "mentally unhealthy" days out of a month, who could not seek health care services due to cost, Texas ranked No. 3 in the U.S. with 31.5 percent of adults experiencing these issues.

The report also highlighted the crystal clear inequality in the distribution of health care costs across the U.S.

"In some states, residents face much steeper health care expenses, including higher premiums and deductibles, which make them more likely to delay medical care due to costs," the report said.

For example, Texas' average annual premiums for both plus-one health insurance coverage ($4,626, according to the study) and family coverage ($7,051.33) through employer-provided policies was the No. 4-highest in the nation.

Elsewhere in the U.S.

The state with the most expensive health care costs is North Carolina, with a score of 100 points. 27 percent of adults in North Carolina reported struggling with their mental health who could not seek a doctor due to cost, and 11.3 percent of all adults in the state chose not to see a doctor within the last 12 months because of costs.

Hawaii (No. 50) is the state with the least expensive health care costs, according to Forbes. Hawaii had the lowest percentages of adults struggling with mental health (11.6 percent) and adults who chose not to see a doctor within the last year (5.7 percent). The average annual premium for employees in Hawaii using a family coverage plan through employer-provided health insurance is $5,373.67, and the average annual deductible for the same family coverage plan is $3,115.

The top 10 states with the most expensive health care are:

  • No. 1 – North Carolina
  • No. 2 – South Dakota
  • No. 3 – Nebraska
  • No. 4 – Florida
  • No. 5 – Texas
  • No. 6 – South Carolina
  • No. 7 – Arizona
  • No. 8 – Georgia
  • No. 9 – New Hampshire
  • No. 10 – Louisiana

The full report and its methodology can be found on forbes.com.

------

This article originally ran on CultureMap.