Houston institutions have landed $6.25 million in NIH funding to launch the HAI-KUH research training program. Photo via UH.

Institutions within Houston’s Texas Medical Center have launched the Houston Area Incubator for Kidney, Urologic and Hematologic Research Training (HAI-KUH) program. The incubator will be backed by $6.25 million over five years from the National Institutes of Health and aims to create a training pipeline for researchers.

HAI-KUH will include 58 investigators from Baylor College of Medicine, Texas Children’s Hospital, the University of Texas Health Science Center at Houston, University of Houston, Houston Methodist Research Institute, MD Anderson Cancer Center, Rice University and Texas A&M University Institute of Biosciences and Technology. The program will fund six predoctoral students and six postdoctoral associates. Trainees will receive support in scientific research, professional development and networking.

According to the organizations, Houston has a high burden of kidney diseases, hypertension, sickle cell disease and other nonmalignant hematologic conditions. HAI-KUH will work to improve the health of patients by building a strong scientific workforce that leverages the team's biomedical research resources to develop research skills of students and trainees and prepare them for sustained and impactful careers. The funding comes through the National Institute of Diabetes and Digestive and Kidney Diseases.

The principal investigators of the project include Dr. Alison Bertuch, professor of pediatric oncology and molecular and human genetics at BCM; Peter Doris, professor and director of the Institute of Molecular Medicine Center for Human Genetics at UT Health; and Margaret Goodell, professor and chair of the Department of Molecular and Cellular Biology at Baylor.

“This new award provides unique collaborative training experiences that extend beyond the outstanding kidney, urology, and hematology research going on in the Texas Medical Center,” Doris said in a news release. “In conceiving this award, the National Institute of Diabetes and Digestive and Kidney Diseases envisioned trainee development across the full spectrum of skills required for professional success.”

Jeffrey Rimer, a professor of Chemical Engineering, is a core investigator on the project and program director at UH. Rimer is known for his breakthroughs in using innovative methods in control crystals to help treat malaria and kidney stones. Other co-investigators include Dr. Wolfgang Winkelmeyer (Baylor), Oleh Pochynyuk (UTHealth), Dr. Rose Khavari (Houston Methodist) and Pamela Wenzel (UT Health).

“This new NIH-sponsored training program will enable us to recruit talented students and postdocs to work on these challenging areas of research,” Rimer added in a release.

Rice University scientists Jeffrey Hartgerink, Brett Pogostin and Kevin McHugh have developed SABER, a peptide hydrogel system for drug delivery. Photos courtesy Rice University.

Houston scientists create platform for long-lasting, precise drug delivery

drug breakthrough

A team of Rice University scientists has developed a new drug delivery platform that researchers say can slow the rate of drug release, which has major implications for drug efficacy and potentially cancer immunotherapy.

The research was published in Nature Nanotechnology, and supported by the National Science Foundation, the National Institutes of Health, the Cancer Prevention and Research Institute of Texas and the Welch Foundation.

In the study, the team demonstrated how a peptide hydrogel functions as a three-dimensional network that controls the rate of release across a range of medication types, including small-molecule drugs and biologics such as insulin and antibodies. The system, called self-assembling boronate ester release (SABER), uses reversible chemical bonds between the peptide and the drug molecule to extend the duration of drug release. Instead of passing quickly through the net, the drug gets temporarily “stuck” each time it binds to the peptide, which slows its passage out of the hydrogel, according to Rice.

The researchers formulated a tuberculosis-treating drug into a hydrogel. They used it to treat infected mice with a single injection of the drug-laden hydrogel. In the test, the hydrogel outperformed almost daily oral administration of the medication over two weeks. Insulin packaged in SABER hydrogels successfully controlled blood sugar levels in diabetic mice for six days in another set of experiments.

Brett Pogostin, a Rice doctoral alum who led the development of SABER and served as first author of the study, began working on self-assembling peptides as an undergraduate student at Rice. Jeffrey Hartgerink, a professor of chemistry and bioengineering at Rice, and Kevin McHugh, associate professor of bioengineering and chemistry and a Cancer Prevention and Research Institute of Texas scholar, advised Pogostin and served as corresponding authors on the study.

Pogostin’s work aimed to bridge foundational materials research and biomedical applications. SABER was inspired by a drug delivery course taught by McHugh, where Pogostin learned about dynamic covalent bonds used in glucose sensing, where the bonds reversibly form and break apart. That quality inspired Pogostin to adapt the concept for drug delivery.

“Brett really drove this project in a way that is, in my experience, unusual for a graduate student,” Hartgerink said in the news release. “It’s a very versatile approach. You can make both small-molecule drugs and very large biologics sticky with the type of chemistry that Brett developed.”

The team demonstrated the platform in two different use cases with Tuberculosis and Type 1 diabetes, with SABER simplifying dosing and enhancing the efficacy of the drugs. Hartgerink described the current SABER system as “generation one,” and plans to work to make it widely applicable. He is looking into how SABER could be applied to cancer immunotherapy.

“What I’m really passionate about right now is cancer prevention — trying to think about how we can use materials to prime the immune system to prevent cancer from ever happening as opposed to just treating it,” Pogostin added.

A team of researchers at the University of Houston is working to develop a new treatment for Rhabdomyosarcoma, an aggressive cancer with a higher incidence in young children. Photo via Getty Images.

UH research team receives grant to fight aggressive pediatric cancer

cancer research

Researchers at the University of Houston have received a $3.2 million grant from the National Institutes of Health to help find innovative ways to treat Rhabdomyosarcoma, or RMS.

According to a statement from the university, RMS is a malignant soft tissue sarcoma that has a higher incidence in young children and is responsible for 8 percent of pediatric cancer cases with a relatively low survival rate.

One way UH is working on the issue is by studying how and why RMS cells, which are found most often in muscle tissue, divide uncontrollably without ever maturing into normal muscle cells. The researchers aim to tackle a target inside RMS cells known as TAK1, which plays a key role in regulating cell growth.

“By targeting TAK1, we aim to stop the cancer at its source and help the cells develop normally,” Ashok Kumar, the Else and Philip Hargrove Endowed Professor of Drug Discovery at the UH College of Pharmacy and director of the Institute of Muscle Biology and Cachexia, said in a news release. “This approach could lead to new and better treatments for RMS.”

According to UH, preliminary results demonstrated that TAK1 is highly activated in embryonal RMS cells, which are found in younger children; alveolar RMS cells, which are found in older children and teens; and human RMS samples. This suggests that the protein plays a major role in the development of this form of cancer.

The team still aims to uncover how the protein helps RMS cancer grow and plans to evaluate how blocking TAK1 can be used as a therapeutic.

“Blocking TAK1, either by changing the genes (genetic approaches) or using drugs (pharmacological approaches), can stop certain harmful behaviors in cancer cells,” Kumar added. “This was tested both in lab-grown cells and in living models, showing that TAK1 is a key target to control RMS cancer’s spread and aggressiveness, and inhibits tumor formation.”

Texas A&M's Dog Aging Project received NIH funding to expand a clinical trial studying how the drug rapamycin can extend the lives of companion dogs. Photo via Getty Images.

Texas A&M expands innovative Dog Aging Project via $7 million grant

pet project

The Texas A&M College of Veterinary Medicine and Biomedical Sciences has received a $7 million grant from the National Institutes of Health to support its Dog Aging Project.

The DAP is a research project that was launched in 2019 by Texas A&M and the University of Washington School of Medicine and has enrolled over 50,000 dogs to date, according to a release. The program studies various breeds of companion dogs and studies the effects of aging to help develop a better understanding of what can lead to an expanded, healthy canine life, which can also assist with human aging knowledge.

The NIH funds will be used to expand a clinical trial studying how the drug rapamycin, also called sirolimus, can extend the lives of companion dogs.

The project, known as Test of Rapamycin In Aging Dogs (TRIAD), is the third DAP clinical trial involving the drug rapamycin. The drug has previously been used as an immunosuppressant during organ transplants in humans. Past DAP studies reported that the drug appears to improve cardiac function in dogs.

“Rapamycin works by modifying the cells’ energy balance and energy handling,” Dr. Kate Creevy, DAP chief veterinary officer and a professor in the VMBS’ Department of Small Animal Clinical Sciences, said in a news release. "It seems to mimic the effects that happen in people or animals who do intermittent fasting. There is a lot of interest in intermittent fasting as a technique that can improve health, particularly healthy aging, and some of the pharmaceutical effects of rapamycin make the same changes at the cellular level.”

So far, 170 dogs are in the trial at 20 sites, with the goal of expanding to 580 dogs enrolled in multiple cities across the country. Dogs must be over 7 years old and in good general health to participate. They should also weigh at least 44 pounds. Owners are required to bring their dogs to one of TRIAD’s participating clinical sites every six months for three years. The Texas clinical sites are in College Station and North Texas.

“Dogs experience many of the age-related cognitive, sensory, neuropathologic and mobility changes that are common in older humans,” Dr. May Reed, a geriatrician at the University of Washington School of Medicine and another primary investigator in the study, said in the release. “The possibility that rapamycin might delay any of the alterations that contribute to cognitive impairment and functional decline is very exciting and has huge translational potential.”

“We get to learn how to support both dog and human aging at the same time. Our research is also powered by owners’ commitments to the health of their dogs, and that’s what makes our work both possible and meaningful,” Creevy added. “We’re very grateful to them.”

Rice researchers are cleaning up when it comes to grants and competitions. Photo via Rice.edu

Rice University innovators claim prizes across health care, energy research

big wins

Undergraduate students from Rice University were awarded the top prize in a health innovation challenge.

Design by Biomedical Undergraduate Teams (DEBUT) Challenge, which is organized by the National Institutes of Health (NIH) and the non-profit organization VentureWell, selected medical device team UroFlo as its winner, claiming the $20,000 prize. The technology, a continuous bladder irrigation system, was recognized for its potential to revolutionize post-operative care and improve patient outcomes.

The winning team from Rice consists of 2024 bioengineering graduates Anushka Agrawal, Sahana Prasanna, Robert Heeter, Archit Chabbi, Kevin Li, and Richard Chan. The UroFlo system provides care to patients after surgery and reduces the burden on health care professionals by implementing state-of-the-art sensors and machine learning algorithms with a touchscreen user interface. This helps with data collection, processing and visualization. UroFlo promises to enhance the management of urinary tract infections (UTIs) and help prevent blood clots.

“We have learned so much from this process and we are really proud of what we have accomplished,” says Chabbi in a news release. “It’s truly rewarding to know that our work can impact patients’ experience and help improve quality of care. Over the many hours we spent working in the Oshman Engineering Design Kitchen (OEDK) at Rice, we’ve not only developed an amazing set of skills, but have also forged really strong connections with one-another and the nearby medical community at the Texas Medical Center.”

The award will be presented on Oct. 25 in Baltimore during the annual Biomedical Engineering Society (BMES) conference.

UroFlo was also with first place in the Johns Hopkins Healthcare Design Competition in the Post-Surgical Infection Management category; first place in the American Society for Artificial Internal Organs Student Design Competition; “Best Medical Device Technology Award” in the 2024 Huff Engineering Design Showcase and competition held by the OEDK; “Outstanding Bioengineering Design Project,” Rice Department of Bioengineering; “Best Presentation” in the Texas Children’s Hospital Surgical Research Day; finalist and “Best Engineering Project” in Rice’s 2024 Shapiro Research Showcases; and semi-finalist in the H. Albert Napier Rice Launch Challenge. UroFlo will continue after Rice, as the project will be developed further.

“We are all very passionate about biomedical engineering, and dedicated and committed to making a difference” Chan said in a news release. “We actually decided to continue to develop UroFlo after our graduation from Rice a few months ago with the hope of improving our innovative solution for urological care.”

In other news, Rice University’s Naomi Halas won $7.5 million over five years from the United States Department of Defense (DOD) Air Force Office of Scientific Research (AFOSR) with her project proposal Multidisciplinary University Research Initiative (MURI) for her project titled “Combining Nonequilibrium Chemistries with Atomic Precision,” which competed in the category “plasmon-controlled single-atom catalysis.”

“Combining Nonequilibrium Chemistries with Atomic Precision” addressed the need for more energy-efficient and less protocol-intensive chemical processes that involve using light to drive chemical reactions and single-atom “reactors” to catalyze chemical reactions that are nearly 100 percent specific in terms of reaction products.

Plasmons work when they make metal nanoparticles act like antennas, and certain designed reactor sites on their surfaces can then carry out chemical reactions at a fraction of the “energy expenditure of conventional industrial catalysts” according to a news release.

Rice University and Baylor College of Medicine have also received $2.8 million in funding from the National Heart, Lung, and Blood Institute (NHLBI) for their research on reducing inflammation and lung damage in acute respiratory distress syndrome (ARDS) patients.

“Cell Based Immunomodulation to Suppress Lung Inflammation and Promote Repair,” will be co-led byRice’s Omid Veiseh, a professor of bioengineering and faculty director of the Rice Biotech Launch Pad, and professor of surgery at Baylor Ravi Kiran Ghanta. They will develop a new translational cell therapy platform “ to allow a better local administration of cytokines to the lungs in order to suppress inflammation and potentially prevent lung damage in ARDS patients” according to a news release.

VenoStent has raised additional funding. Image courtesy of VenoStent

Houston health tech startup secures $20M series A, NIH grant amid clinical trials

fresh funding

A clinical-stage Houston health tech company with a novel therapeutic device has raised venture capital funding and secured a grant from the National Institutes of Health.

VenoStent Inc., which is currently in clinical trials with its bioabsorbable perivascular wrap, announced the closing of a $20 million series A round co-led by Good Growth Capital and IAG Capital Partners. The two Charleston, South Carolina-based firms also led VenoStent's 2023 series A round that closed last year at $16 million.

Additionally, the company secured a $3.6 million Small Business Innovation Research (SBIR) Phase II Grant from NIH, which will help fund its multi-center, 200-patient, randomized controlled trial in the United States.

Tim Boire, VenoStent CEO and co-founder, describes 2024 so far as "a momentous year" so far for his company.

"In the span of a few months, we initiated our first clinical sites, enrolled the first patients in our large RCT and closed our Series A with Norwest," Boire says in a news release. "We also received the NIH grant, which enables us to execute our trial with the highest degree of quality and rigor to make it as scientifically robust and impactful to patients as possible.

'Each of these are major company milestones that collectively represent many years of intensive and fruitful R&D and collaboration," he continues. "These recent milestones will propel our company forward to an exciting next phase."

Tim Boire is the CEO and co-founder of VenoStent. Photo via LinkedIn

The company's innovation, the SelfWrap, goes around arteriovenous (AV) access sites at the time of AV fistula creation surgery. The device is intended "to accelerate the usability and increase the durability of the fistula sites for chronic kidney disease (CKD) patients requiring hemodialysis," reads the release, "mimicking the arterial environment in veins, which experience a 10x increase in pressure and flow during AV creation and causes the veins to become unusable in dialysis."

Along with the investment, VenoStent announced two new board observers. Norwest General Partner Dr. Zack Scott and Investor Dr. Ehi Akhirome are bringing their expertise to the growing company.

"Norwest's investment is tremendous validation for VenoStent, and we are thrilled to have both Zack and Ehi joining the company's board," VenoStent COO and Co-Founder Geoffrey Lucks adds in the release. "Zack and Ehi have extensive knowledge in our space, and their added value will match the capital and cache of Norwest dollar-for-dollar."

Last year at the same time VenoStent announced its last funding round, the SelfWrap was approved by the U.S. Food and Drug Administration to begin its U.S. Investigational Device Exemption (IDE) study.

"Over half a million people in the U.S. rely on hemodialysis to survive and require an arteriovenous fistula creation surgery in order to receive the treatment. However, the AV fistula procedure has a one-year failure rate of more than 60 percent, which significantly impacts patients' survival rates and quality of life," Scott says in the release. "VenoStent's groundbreaking technology for AV fistula formation, SelfWrap, has the potential to significantly improve these odds. We look forward to working with the VenoStent team as it proves the efficacy of this breakthrough technology in order to improve the lives of hundreds of thousands of CKD patients."

Last summer, Boire told InnovationMap on the Houston Innovators Podcast that he's looking to launch the product in 2026.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

5 incubators and accelerators fueling the growth of Houston startups

meet the finalists

Houston is home to numerous accelerators and incubators that support founders in pushing their innovative startups and technologies forward.

As part of our 2025 Houston Innovation Awards, the new Incubator/Accelerator of the Year category honors a local incubator or accelerator that is championing and fueling the growth of Houston startups.

Five incubators and accelerators have been named finalists for the 2025 award. They support startups ranging from hard-tech companies to digital health startups.

Read more about these organizations below. Then join us at the Houston Innovation Awards on Nov. 13 at Greentown Labs, when the winner will be unveiled.

Get your tickets now on sale for this exclusive event celebrating Houston Innovation.

Activate

Hard tech incubator Activate supports scientists in "the outset of their entrepreneurial journey." The Houston hub was introduced last year, and joins others in Boston, New York, and Berkley, California—where Activate is headquartered. It named its second Houston cohort this summer.

This year, the incubator grew to include its largest number of concurrent supported fellows, with 88 companies currently being supported nationally. In total, Activate has supported 296 fellows who have created 236 companies. Those companies have raised over $4 billion in follow-on funding, according to Activate. In Houston, it has supported several Innovation Awards finalists, including Solidec, Bairitone Health and Deep Anchor Solutions. It is led locally by Houston Managing Director Jeremy Pitts.

EnergyTech Nexus

Cleantech startup hub EnergyTech Nexus' mission is to accelerate the energy transition by connecting founders, investors and industrial stakeholders and helping to develop transformative companies, known as "thunderlizards."

The hub was founded in 2023 by CEO Jason Ethier, Juliana Garaizar and Nada Ahmed. It has supported startups including Capwell Services, Resollant, Syzygy Plasmonics, Hertha Metals, EarthEn Energy and Solidec—many of which are current or past Innovation Awards finalists. This year Energy Tech Nexus launched its COPILOT Accelerator, powered by Wells Fargo Innovation Incubator (IN²) at the National Renewable Energy Laboratory (NREL). COPILOT partners with Browning the Green Space, a nonprofit that promotes diversity, equity and inclusion (DEI) in the clean energy and climatech sectors. Energy Tech Nexus also launched its Liftoff fundraising program, its Investor Program, and a "strategic ecosystem partnership" with Greentown Labs.

Greentown Labs

Climatetech incubator Greentown Labs offers its community resources and a network to climate and energy innovation startups looking to grow. The collaborative community offers members state-of-the-art prototyping labs, business resources and access to investors and corporate partners. The co-located incubator was first launched in Boston in 2011 before opening in Houston in 2021.

Greentown has seen major changes and activity this year. In February, Greentown announced Georgina Campbell Flatter as its new CEO, along with a new Board of Directors. In July, it announced Lawson Gow as its Head of Houston, a "dedicated role to champion the success of Greentown Houston’s startups and lead Greentown’s next chapter of impact in the region," according to Greentown. It has since announced numerous new partnerships, including those with Energy Tech Nexus, Los Angeles-based software development firm Nominal, to launch the new Industrial Center of Excellence; and Houston-based Shoreless, to launch an AI lab onsite. Greentown Houston has supported 175 startups since its launch in 2021, with 45 joining in the last two years. Those startups include the likes of Hertha Metals, RepAir Carbon, Solidec, Eclipse Energy (formerly GoldH2) and many others.

Healthtech Accelerator (TMCi)

The Healthtech Accelerator, formerly TMCx, focuses on clinical partnerships to improve healthcare delivery and outcomes. Emerging digital health and medical device startups that join the accelerator are connected with a network of TMC hospitals and seasoned advisors that will prepare them for clinical validation, funding and deployment.

The Healthtech Accelerator is part of Texas Medical Center Innovation, which also offers the TMCi Accelerator for Cancer Therapeutics. The Healthtech Accelerator named its 19th, and latest, cohort of 11 companies last month.

Impact Hub Houston

Impact Hub Houston supports early-stage ventures at various stages of development through innovative programs that address pressing societal issues. The nonprofit organization supports social impact startups through mentorship, connections and training opportunities.

There are more than 110 Impact Hubs globally with 24,000-plus members spanning 69 countries, making it one of the world’s largest communities for accelerating entrepreneurial solutions toward the United Nations' Sustainable Development Goals (SDGs).

---

The Houston Innovation Awards program is sponsored by Houston City College Northwest, Houston Powder Coaters, FLIGHT by Yuengling, and more to be announced soon. For sponsorship opportunities, please contact sales@innovationmap.com.



Rice University launches  engineering-led brain science and health institute

brain research

Rice University has announced the creation of a new interdisciplinary center known as the Rice Brain Institute (RBI).

The new hub will aim to use engineering, natural sciences and social sciences to research the brain and reduce the burden of neurodegenerative, neurodevelopmental and mental health disorders.

“The Rice Brain Institute reflects Rice’s strength in collaboration without boundaries,” Rachel Kimbro, dean of the School of Social Sciences, said in a news release. “Our researchers are not only advancing fundamental science but they’re also ensuring that knowledge reaches society in ways that promote human flourishing.”

RBI researchers will work in thematic clusters focusing on neurodegeneration, mental health, brain injury and neurodevelopment. The clusters will work toward goals such as significantly improving key brain health outcomes, reducing mortality and mental health disorders and improving quality of life for patients living with brain injuries and neurodevelopmental disorders, according to Rice.

The institute will focus on “engineering-driven innovation,” rather than traditional neuroscience, to design tools that can measure, model and modulate brain activity based around Rice’s expertise in soft robotics, neuroimaging, data science and artificial intelligence—making it unique among peer organizations, according to Rice.

Additionally, RBI will be structured around three collaborative Rice “pillars”:

  • The Neuroengineering Initiative, launched in 2018, brings together neuroscience, engineering, and related fields experts
  • The Neuroscience Initiative, a new initiative that brings together cell biologists, neurobiologists, biochemists, chemists and physicists to explore fundamental mechanisms of the brain and nervous system
  • The Brain and Society Initiative, also a new initiative, considers brain research within the broader social and policy landscape

Rice’s Neuroengineering Initiative has already garnered more than $78 million in research funding, according to Rice, and has established major partnerships, like the Rice-Houston Methodist Center for Neural Systems Restoration.

“Rice is uniquely equipped to bridge and connect scientific understanding of the brain and behavior sciences with the technologies and policies that shape our world,” Amy Dittmar, the Howard R. Hughes Provost and executive vice president for academic affairs, added in the news release. “By uniting faculty in neuroengineering, neuroscience and psychological sciences, this interdisciplinary hub embodies the kind of bold, nimble collaboration that allows Rice to turn discovery into societal impact to save lives and enhance human flourishing.”

The formation of the RBI coincides with recent support of the Dementia Prevention Research Institute of Texas (DPRIT), which landed voter approval earlier this week and aims to make Texas the center for dementia research via brain-health tech. According to the World Economic Forum, brain disorders and mental health disorders cost the global economy an estimated $5 trillion per year and could be as high as $16 trillion by 2030.

“Few areas of research have as direct and profound an impact on human well-being as brain health,” Rice President Reginald DesRoches added in the news release. “As rates of Alzheimer’s, dementia and other neurological diseases rise in our country and around the world, universities have a responsibility to lead the discovery of solutions that preserve memory, movement and quality of life. We all know someone who has been affected by a brain-related health issue, so this research is personal to all of us.”

Texas voters OK $3 billion for new dementia research institute

state funding

Texas voters on Nov. 4 overwhelmingly approved a ballot measure that provides $3 billion in state funding over a 10-year span for the newly established Dementia Prevention and Research Institute of Texas (DPRIT).

Thanks to the passage of Proposition 14, Texas now boasts the country’s largest state-funded initiative dedicated to dementia research and prevention, according to the Alzheimer’s Association. Up to $300 million in grants will be awarded during the 10-year funding period.

“This is a transformative moment for Texas and for the fight against Alzheimer’s and all other dementia,” said Joanne Pike, president and CEO of the Alzheimer’s Association. “Texans have chosen to invest in hope, innovation, and solutions for the millions of families affected by these devastating diseases. With the passage of Proposition 14, Texas is now poised to lead the nation in dementia research and prevention.”

The association says DPRIT will drive scientific breakthroughs, attract top-notch dementia researchers to Texas, and generate thousands of jobs statewide.

An estimated 460,000 Texans are living with dementia, the association says, and more than one million caregivers support them.

DPRIT is modeled after the Cancer Prevention and Research Institute of Texas (CPRIT). Since 2008, the state agency has awarded nearly $4 billion in grants to research organizations for cancer-related academic research, prevention programs, and product development.

An analysis by the McKinsey Health Institute found that investing in brain health initiatives like DPRIT could boost Texas’ GDP by $260 billion. Much of that GDP bump could benefit the Houston area, which is home to dementia-focused organizations such as UTHealth Houston Neurosciences, Baylor College of Medicine’s Center for Alzheimer’s and Neurodegenerative Diseases, the University of Texas Medical Branch at Galveston’s Collaborative Alzheimer’s Disease and Memory Disorders Program, and the Houston Methodist Research Institute’s John M. O’Quinn Foundation Neurodegenerative Disorders Laboratory.

The Greater Houston Partnership says DPRIT holds the potential “to elevate Texas — particularly Houston — as a hub for brain health research.”

State Sen. Joan Huffman, a Houston Republican, is one of DPRIT’s champions. She sponsored legislation this year to create the institute and ask Texas voters to approve the $3 billion in funding.

“By establishing the Dementia Prevention and Research Institute of Texas, we are positioning our state to lead the charge against one of the most devastating health challenges of our time,” Huffman said in May. “With $3 billion in funding over the next decade, we will drive critical research, develop new strategies for prevention and treatment, and support our health care community.”