Houston institutions have landed $6.25 million in NIH funding to launch the HAI-KUH research training program. Photo via UH.

Institutions within Houston’s Texas Medical Center have launched the Houston Area Incubator for Kidney, Urologic and Hematologic Research Training (HAI-KUH) program. The incubator will be backed by $6.25 million over five years from the National Institutes of Health and aims to create a training pipeline for researchers.

HAI-KUH will include 58 investigators from Baylor College of Medicine, Texas Children’s Hospital, the University of Texas Health Science Center at Houston, University of Houston, Houston Methodist Research Institute, MD Anderson Cancer Center, Rice University and Texas A&M University Institute of Biosciences and Technology. The program will fund six predoctoral students and six postdoctoral associates. Trainees will receive support in scientific research, professional development and networking.

According to the organizations, Houston has a high burden of kidney diseases, hypertension, sickle cell disease and other nonmalignant hematologic conditions. HAI-KUH will work to improve the health of patients by building a strong scientific workforce that leverages the team's biomedical research resources to develop research skills of students and trainees and prepare them for sustained and impactful careers. The funding comes through the National Institute of Diabetes and Digestive and Kidney Diseases.

The principal investigators of the project include Dr. Alison Bertuch, professor of pediatric oncology and molecular and human genetics at BCM; Peter Doris, professor and director of the Institute of Molecular Medicine Center for Human Genetics at UT Health; and Margaret Goodell, professor and chair of the Department of Molecular and Cellular Biology at Baylor.

“This new award provides unique collaborative training experiences that extend beyond the outstanding kidney, urology, and hematology research going on in the Texas Medical Center,” Doris said in a news release. “In conceiving this award, the National Institute of Diabetes and Digestive and Kidney Diseases envisioned trainee development across the full spectrum of skills required for professional success.”

Jeffrey Rimer, a professor of Chemical Engineering, is a core investigator on the project and program director at UH. Rimer is known for his breakthroughs in using innovative methods in control crystals to help treat malaria and kidney stones. Other co-investigators include Dr. Wolfgang Winkelmeyer (Baylor), Oleh Pochynyuk (UTHealth), Dr. Rose Khavari (Houston Methodist) and Pamela Wenzel (UT Health).

“This new NIH-sponsored training program will enable us to recruit talented students and postdocs to work on these challenging areas of research,” Rimer added in a release.

Rice University scientists Jeffrey Hartgerink, Brett Pogostin and Kevin McHugh have developed SABER, a peptide hydrogel system for drug delivery. Photos courtesy Rice University.

Houston scientists create platform for long-lasting, precise drug delivery

drug breakthrough

A team of Rice University scientists has developed a new drug delivery platform that researchers say can slow the rate of drug release, which has major implications for drug efficacy and potentially cancer immunotherapy.

The research was published in Nature Nanotechnology, and supported by the National Science Foundation, the National Institutes of Health, the Cancer Prevention and Research Institute of Texas and the Welch Foundation.

In the study, the team demonstrated how a peptide hydrogel functions as a three-dimensional network that controls the rate of release across a range of medication types, including small-molecule drugs and biologics such as insulin and antibodies. The system, called self-assembling boronate ester release (SABER), uses reversible chemical bonds between the peptide and the drug molecule to extend the duration of drug release. Instead of passing quickly through the net, the drug gets temporarily “stuck” each time it binds to the peptide, which slows its passage out of the hydrogel, according to Rice.

The researchers formulated a tuberculosis-treating drug into a hydrogel. They used it to treat infected mice with a single injection of the drug-laden hydrogel. In the test, the hydrogel outperformed almost daily oral administration of the medication over two weeks. Insulin packaged in SABER hydrogels successfully controlled blood sugar levels in diabetic mice for six days in another set of experiments.

Brett Pogostin, a Rice doctoral alum who led the development of SABER and served as first author of the study, began working on self-assembling peptides as an undergraduate student at Rice. Jeffrey Hartgerink, a professor of chemistry and bioengineering at Rice, and Kevin McHugh, associate professor of bioengineering and chemistry and a Cancer Prevention and Research Institute of Texas scholar, advised Pogostin and served as corresponding authors on the study.

Pogostin’s work aimed to bridge foundational materials research and biomedical applications. SABER was inspired by a drug delivery course taught by McHugh, where Pogostin learned about dynamic covalent bonds used in glucose sensing, where the bonds reversibly form and break apart. That quality inspired Pogostin to adapt the concept for drug delivery.

“Brett really drove this project in a way that is, in my experience, unusual for a graduate student,” Hartgerink said in the news release. “It’s a very versatile approach. You can make both small-molecule drugs and very large biologics sticky with the type of chemistry that Brett developed.”

The team demonstrated the platform in two different use cases with Tuberculosis and Type 1 diabetes, with SABER simplifying dosing and enhancing the efficacy of the drugs. Hartgerink described the current SABER system as “generation one,” and plans to work to make it widely applicable. He is looking into how SABER could be applied to cancer immunotherapy.

“What I’m really passionate about right now is cancer prevention — trying to think about how we can use materials to prime the immune system to prevent cancer from ever happening as opposed to just treating it,” Pogostin added.

A team of researchers at the University of Houston is working to develop a new treatment for Rhabdomyosarcoma, an aggressive cancer with a higher incidence in young children. Photo via Getty Images.

UH research team receives grant to fight aggressive pediatric cancer

cancer research

Researchers at the University of Houston have received a $3.2 million grant from the National Institutes of Health to help find innovative ways to treat Rhabdomyosarcoma, or RMS.

According to a statement from the university, RMS is a malignant soft tissue sarcoma that has a higher incidence in young children and is responsible for 8 percent of pediatric cancer cases with a relatively low survival rate.

One way UH is working on the issue is by studying how and why RMS cells, which are found most often in muscle tissue, divide uncontrollably without ever maturing into normal muscle cells. The researchers aim to tackle a target inside RMS cells known as TAK1, which plays a key role in regulating cell growth.

“By targeting TAK1, we aim to stop the cancer at its source and help the cells develop normally,” Ashok Kumar, the Else and Philip Hargrove Endowed Professor of Drug Discovery at the UH College of Pharmacy and director of the Institute of Muscle Biology and Cachexia, said in a news release. “This approach could lead to new and better treatments for RMS.”

According to UH, preliminary results demonstrated that TAK1 is highly activated in embryonal RMS cells, which are found in younger children; alveolar RMS cells, which are found in older children and teens; and human RMS samples. This suggests that the protein plays a major role in the development of this form of cancer.

The team still aims to uncover how the protein helps RMS cancer grow and plans to evaluate how blocking TAK1 can be used as a therapeutic.

“Blocking TAK1, either by changing the genes (genetic approaches) or using drugs (pharmacological approaches), can stop certain harmful behaviors in cancer cells,” Kumar added. “This was tested both in lab-grown cells and in living models, showing that TAK1 is a key target to control RMS cancer’s spread and aggressiveness, and inhibits tumor formation.”

Texas A&M's Dog Aging Project received NIH funding to expand a clinical trial studying how the drug rapamycin can extend the lives of companion dogs. Photo via Getty Images.

Texas A&M expands innovative Dog Aging Project via $7 million grant

pet project

The Texas A&M College of Veterinary Medicine and Biomedical Sciences has received a $7 million grant from the National Institutes of Health to support its Dog Aging Project.

The DAP is a research project that was launched in 2019 by Texas A&M and the University of Washington School of Medicine and has enrolled over 50,000 dogs to date, according to a release. The program studies various breeds of companion dogs and studies the effects of aging to help develop a better understanding of what can lead to an expanded, healthy canine life, which can also assist with human aging knowledge.

The NIH funds will be used to expand a clinical trial studying how the drug rapamycin, also called sirolimus, can extend the lives of companion dogs.

The project, known as Test of Rapamycin In Aging Dogs (TRIAD), is the third DAP clinical trial involving the drug rapamycin. The drug has previously been used as an immunosuppressant during organ transplants in humans. Past DAP studies reported that the drug appears to improve cardiac function in dogs.

“Rapamycin works by modifying the cells’ energy balance and energy handling,” Dr. Kate Creevy, DAP chief veterinary officer and a professor in the VMBS’ Department of Small Animal Clinical Sciences, said in a news release. "It seems to mimic the effects that happen in people or animals who do intermittent fasting. There is a lot of interest in intermittent fasting as a technique that can improve health, particularly healthy aging, and some of the pharmaceutical effects of rapamycin make the same changes at the cellular level.”

So far, 170 dogs are in the trial at 20 sites, with the goal of expanding to 580 dogs enrolled in multiple cities across the country. Dogs must be over 7 years old and in good general health to participate. They should also weigh at least 44 pounds. Owners are required to bring their dogs to one of TRIAD’s participating clinical sites every six months for three years. The Texas clinical sites are in College Station and North Texas.

“Dogs experience many of the age-related cognitive, sensory, neuropathologic and mobility changes that are common in older humans,” Dr. May Reed, a geriatrician at the University of Washington School of Medicine and another primary investigator in the study, said in the release. “The possibility that rapamycin might delay any of the alterations that contribute to cognitive impairment and functional decline is very exciting and has huge translational potential.”

“We get to learn how to support both dog and human aging at the same time. Our research is also powered by owners’ commitments to the health of their dogs, and that’s what makes our work both possible and meaningful,” Creevy added. “We’re very grateful to them.”

Rice researchers are cleaning up when it comes to grants and competitions. Photo via Rice.edu

Rice University innovators claim prizes across health care, energy research

big wins

Undergraduate students from Rice University were awarded the top prize in a health innovation challenge.

Design by Biomedical Undergraduate Teams (DEBUT) Challenge, which is organized by the National Institutes of Health (NIH) and the non-profit organization VentureWell, selected medical device team UroFlo as its winner, claiming the $20,000 prize. The technology, a continuous bladder irrigation system, was recognized for its potential to revolutionize post-operative care and improve patient outcomes.

The winning team from Rice consists of 2024 bioengineering graduates Anushka Agrawal, Sahana Prasanna, Robert Heeter, Archit Chabbi, Kevin Li, and Richard Chan. The UroFlo system provides care to patients after surgery and reduces the burden on health care professionals by implementing state-of-the-art sensors and machine learning algorithms with a touchscreen user interface. This helps with data collection, processing and visualization. UroFlo promises to enhance the management of urinary tract infections (UTIs) and help prevent blood clots.

“We have learned so much from this process and we are really proud of what we have accomplished,” says Chabbi in a news release. “It’s truly rewarding to know that our work can impact patients’ experience and help improve quality of care. Over the many hours we spent working in the Oshman Engineering Design Kitchen (OEDK) at Rice, we’ve not only developed an amazing set of skills, but have also forged really strong connections with one-another and the nearby medical community at the Texas Medical Center.”

The award will be presented on Oct. 25 in Baltimore during the annual Biomedical Engineering Society (BMES) conference.

UroFlo was also with first place in the Johns Hopkins Healthcare Design Competition in the Post-Surgical Infection Management category; first place in the American Society for Artificial Internal Organs Student Design Competition; “Best Medical Device Technology Award” in the 2024 Huff Engineering Design Showcase and competition held by the OEDK; “Outstanding Bioengineering Design Project,” Rice Department of Bioengineering; “Best Presentation” in the Texas Children’s Hospital Surgical Research Day; finalist and “Best Engineering Project” in Rice’s 2024 Shapiro Research Showcases; and semi-finalist in the H. Albert Napier Rice Launch Challenge. UroFlo will continue after Rice, as the project will be developed further.

“We are all very passionate about biomedical engineering, and dedicated and committed to making a difference” Chan said in a news release. “We actually decided to continue to develop UroFlo after our graduation from Rice a few months ago with the hope of improving our innovative solution for urological care.”

In other news, Rice University’s Naomi Halas won $7.5 million over five years from the United States Department of Defense (DOD) Air Force Office of Scientific Research (AFOSR) with her project proposal Multidisciplinary University Research Initiative (MURI) for her project titled “Combining Nonequilibrium Chemistries with Atomic Precision,” which competed in the category “plasmon-controlled single-atom catalysis.”

“Combining Nonequilibrium Chemistries with Atomic Precision” addressed the need for more energy-efficient and less protocol-intensive chemical processes that involve using light to drive chemical reactions and single-atom “reactors” to catalyze chemical reactions that are nearly 100 percent specific in terms of reaction products.

Plasmons work when they make metal nanoparticles act like antennas, and certain designed reactor sites on their surfaces can then carry out chemical reactions at a fraction of the “energy expenditure of conventional industrial catalysts” according to a news release.

Rice University and Baylor College of Medicine have also received $2.8 million in funding from the National Heart, Lung, and Blood Institute (NHLBI) for their research on reducing inflammation and lung damage in acute respiratory distress syndrome (ARDS) patients.

“Cell Based Immunomodulation to Suppress Lung Inflammation and Promote Repair,” will be co-led byRice’s Omid Veiseh, a professor of bioengineering and faculty director of the Rice Biotech Launch Pad, and professor of surgery at Baylor Ravi Kiran Ghanta. They will develop a new translational cell therapy platform “ to allow a better local administration of cytokines to the lungs in order to suppress inflammation and potentially prevent lung damage in ARDS patients” according to a news release.

VenoStent has raised additional funding. Image courtesy of VenoStent

Houston health tech startup secures $20M series A, NIH grant amid clinical trials

fresh funding

A clinical-stage Houston health tech company with a novel therapeutic device has raised venture capital funding and secured a grant from the National Institutes of Health.

VenoStent Inc., which is currently in clinical trials with its bioabsorbable perivascular wrap, announced the closing of a $20 million series A round co-led by Good Growth Capital and IAG Capital Partners. The two Charleston, South Carolina-based firms also led VenoStent's 2023 series A round that closed last year at $16 million.

Additionally, the company secured a $3.6 million Small Business Innovation Research (SBIR) Phase II Grant from NIH, which will help fund its multi-center, 200-patient, randomized controlled trial in the United States.

Tim Boire, VenoStent CEO and co-founder, describes 2024 so far as "a momentous year" so far for his company.

"In the span of a few months, we initiated our first clinical sites, enrolled the first patients in our large RCT and closed our Series A with Norwest," Boire says in a news release. "We also received the NIH grant, which enables us to execute our trial with the highest degree of quality and rigor to make it as scientifically robust and impactful to patients as possible.

'Each of these are major company milestones that collectively represent many years of intensive and fruitful R&D and collaboration," he continues. "These recent milestones will propel our company forward to an exciting next phase."

Tim Boire is the CEO and co-founder of VenoStent. Photo via LinkedIn

The company's innovation, the SelfWrap, goes around arteriovenous (AV) access sites at the time of AV fistula creation surgery. The device is intended "to accelerate the usability and increase the durability of the fistula sites for chronic kidney disease (CKD) patients requiring hemodialysis," reads the release, "mimicking the arterial environment in veins, which experience a 10x increase in pressure and flow during AV creation and causes the veins to become unusable in dialysis."

Along with the investment, VenoStent announced two new board observers. Norwest General Partner Dr. Zack Scott and Investor Dr. Ehi Akhirome are bringing their expertise to the growing company.

"Norwest's investment is tremendous validation for VenoStent, and we are thrilled to have both Zack and Ehi joining the company's board," VenoStent COO and Co-Founder Geoffrey Lucks adds in the release. "Zack and Ehi have extensive knowledge in our space, and their added value will match the capital and cache of Norwest dollar-for-dollar."

Last year at the same time VenoStent announced its last funding round, the SelfWrap was approved by the U.S. Food and Drug Administration to begin its U.S. Investigational Device Exemption (IDE) study.

"Over half a million people in the U.S. rely on hemodialysis to survive and require an arteriovenous fistula creation surgery in order to receive the treatment. However, the AV fistula procedure has a one-year failure rate of more than 60 percent, which significantly impacts patients' survival rates and quality of life," Scott says in the release. "VenoStent's groundbreaking technology for AV fistula formation, SelfWrap, has the potential to significantly improve these odds. We look forward to working with the VenoStent team as it proves the efficacy of this breakthrough technology in order to improve the lives of hundreds of thousands of CKD patients."

Last summer, Boire told InnovationMap on the Houston Innovators Podcast that he's looking to launch the product in 2026.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

XSpace adds 3 Houston partners to fuel national expansion

growth mode

Texas-based XSpace Group has brought onboard three partners from the Houston area to ramp up the company’s national expansion.

The new partners of XSpace, which sells high-end multi-use commercial condos, are KDW, Pyek Financial and Welcome Wilson Jr. Houston-based KDW is a design-build real estate developer, Katy-based Pyek offers fractional CFO services and Wilson is president and CEO of Welcome Group, a Houston real estate development firm.

“KDW has been shaping the commercial [real estate] landscape in Texas for years, and Pyek Financial brings deep expertise in scaling businesses and creating long‑term value,” says Byron Smith, founder of XSpace. “Their commitment to XSpace is a powerful endorsement of our model and momentum. With their resources, we’re accelerating our growth and building the foundation for nationwide expansion.”

The expansion effort will target high-growth markets, potentially including Nashville, Tennessee; Orlando, Florida; and Charlotte and Raleigh, North Carolina.

XSpace launched in Austin with a $20 million, 90,000-square-foot project featuring 106 condos. The company later added locations on Old Katy Road in Houston and at The Woodlands Town Center. A third Houston-area location is coming to the Design District.

XSpace condos range in size from 300 to 3,000 square feet. They can accommodate a variety of uses, such as a luxury-car storage space, a satellite office, or a podcasting studio.

“XSpace has tapped into a fundamental shift in how entrepreneurs and professionals want to use space,” Wilson says. “Houston is one of the best places in the country to innovate and build, and XSpace’s model is perfectly aligned with the needs of this fast‑growing, opportunity‑driven market.”

Rice Business Plan Competition names startup teams for 2026 event

ready, set, pitch

The Rice Alliance for Technology and Entrepreneurship has announced the 42 student-led teams that will compete in the 26th annual Rice Business Plan Competition this spring.

The highly competitive event, known as one of the world’s largest and richest intercollegiate student startup challenges, will take place April 9-11 on Rice's campus and at the Ion. Teams in this year's competition represent 39 universities from four countries, including one team from Rice and two from the University of Texas at Austin.

Graduate student-led teams from colleges or universities around the world will present their plans before more than 300 angel, venture capital and corporate investors to compete for more than $1 million in prizes. Top teams were awarded $2 million in investment and cash prizes at the 2025 event.

The 2026 invitees include:

  • Alchemll, University of Tennessee - Knoxville
  • Altaris MedTech, University of Arkansas
  • Armada Therapeutics, Dartmouth College
  • Arrow Analytics, Texas A&M University
  • Aura Life Science, Northwestern University
  • BeamFeed, City University of New York
  • BiliRoo, University of Michigan
  • BioLegacy, Seattle University
  • BlueHealer, Johns Hopkins University
  • BRCĒ, Michigan State University
  • ChargeBay, University of Miami
  • Cocoa Potash, Case Western Reserve
  • Cosnetix, Yale University
  • Cottage Core, Kent State University
  • Crack'd Up, University of Wisconsin - Madison
  • Curbon, Princeton University
  • DialySafe, Rice University
  • Foregger Energy Systems, Babson College
  • Forge, University of California, Berkeley
  • Grapheon, University of Pittsburgh
  • GUIDEAIR Labs, University of Washington
  • Hydrastack, University of Chicago
  • Imagine Devices, University of Texas at Austin
  • Innowind Energy Solutions, University of Waterloo (Canada)
  • JanuTech, University of Washington
  • Laetech, University of Toronto (Canada)
  • Lectra Technologies, MIT
  • Legion Platforms, Arizona State University
  • Lucy, University of Pennsylvania
  • NerView Surgical, McMaster University (Canada)
  • Panoptica Technologies, Georgia Tech University
  • PowerHouse, MIT
  • Quantum Power Systems, University of Texas at Austin
  • Routora, University of Notre Dame
  • Sentivity.ai, Virginia Tech
  • Shinra Energy, Harvard University
  • Solid Air Dynamics, RWTH Aachen (Germany)
  • Spine Biotics, University of North Carolina - Chapel Hill
  • The Good Company, Michigan Tech
  • UNCHAIN, Lehigh University
  • VivoFlux, University of Rochester
  • Vocadian, University of Oxford (UK)

This year's group joins more than 910 RBPC alums that have raised more than $6.9 billion in capital, according to Rice.

The University of Michigan's Intero Biosystems, which is developing the first stem cell-driven human “mini gut,” took home the largest investment sum of $902,000 last year. The company also claimed the first-place prize.

Houston suburb ranks as No. 3 best place to retire in Texas

Rankings & Reports

Texas retirees on the hunt for the right place to settle down and enjoy their blissful retirement years will find their haven in the Houston suburb of Pasadena, which just ranked as the third-best city to retire statewide.

A new study conducted by the research team at RetirementLiving.com, "The Best Cities to Retire in Texas," compared the affordability, safety, livability, and healthcare access for seniors across 31 Texas cities with at least 90,000 residents.

Wichita Falls, about 140 miles northwest of Dallas, claimed the top spot as the No. 1 best place to retire in Texas.

The senior living experts said Pasadena has the best healthcare access for seniors in the entire state, and it ranked as the No. 8 most affordable city on the list.

"Taking care of one’s health can be stressful for seniors," the report said. "Harris County, where [Pasadena is] located, has 281.1 primary care physicians per 1,000 seniors — that’s almost 50-fold the statewide ratio of 5.9 per 1,000."

Pasadena ranked 10th overall for its livability, and ranked 25th for safety, the report added.

Meanwhile, Houston proper ranked as the No. 31 best place to retire in Texas, but its livability score was the 7th best statewide.

Seven of the Lone Star State's top 10 best retirement locales are located in the Dallas-Fort Worth Metroplex: Carrollton (No. 2), Plano (No. 4), Garland (No. 5), Richardson (No. 6), Arlington (No. 7), Grand Prairie (No. 8), and Irving (No. 9). McAllen, a South Texas border town, rounded out the top 10.

RetirementLiving said Carrollton has one of the lowest property and violent crime rates per capita in Texas, and it ranked as the No. 5 safest city on the list. About 17 percent of the city's population is aged 65 or older, which is higher than the statewide average of just 14 percent.

The top 10 best place to retire in Texas in 2026 are:

  • No. 1 – Wichita Falls
  • No. 2 – Carrollton
  • No. 3 – Pasadena
  • No. 4 – Plano
  • No. 5 – Garland
  • No. 6 – Richardson
  • No. 7 – Arlington
  • No. 8 – Grand Prairie
  • No. 9 – Irving
  • No. 10 – McAllen
---

This article originally appeared on CultureMap.com.