Rice University scientists Jeffrey Hartgerink, Brett Pogostin and Kevin McHugh have developed SABER, a peptide hydrogel system for drug delivery. Photos courtesy Rice University.

A team of Rice University scientists has developed a new drug delivery platform that researchers say can slow the rate of drug release, which has major implications for drug efficacy and potentially cancer immunotherapy.

The research was published in Nature Nanotechnology, and supported by the National Science Foundation, the National Institutes of Health, the Cancer Prevention and Research Institute of Texas and the Welch Foundation.

In the study, the team demonstrated how a peptide hydrogel functions as a three-dimensional network that controls the rate of release across a range of medication types, including small-molecule drugs and biologics such as insulin and antibodies. The system, called self-assembling boronate ester release (SABER), uses reversible chemical bonds between the peptide and the drug molecule to extend the duration of drug release. Instead of passing quickly through the net, the drug gets temporarily “stuck” each time it binds to the peptide, which slows its passage out of the hydrogel, according to Rice.

The researchers formulated a tuberculosis-treating drug into a hydrogel. They used it to treat infected mice with a single injection of the drug-laden hydrogel. In the test, the hydrogel outperformed almost daily oral administration of the medication over two weeks. Insulin packaged in SABER hydrogels successfully controlled blood sugar levels in diabetic mice for six days in another set of experiments.

Brett Pogostin, a Rice doctoral alum who led the development of SABER and served as first author of the study, began working on self-assembling peptides as an undergraduate student at Rice. Jeffrey Hartgerink, a professor of chemistry and bioengineering at Rice, and Kevin McHugh, associate professor of bioengineering and chemistry and a Cancer Prevention and Research Institute of Texas scholar, advised Pogostin and served as corresponding authors on the study.

Pogostin’s work aimed to bridge foundational materials research and biomedical applications. SABER was inspired by a drug delivery course taught by McHugh, where Pogostin learned about dynamic covalent bonds used in glucose sensing, where the bonds reversibly form and break apart. That quality inspired Pogostin to adapt the concept for drug delivery.

“Brett really drove this project in a way that is, in my experience, unusual for a graduate student,” Hartgerink said in the news release. “It’s a very versatile approach. You can make both small-molecule drugs and very large biologics sticky with the type of chemistry that Brett developed.”

The team demonstrated the platform in two different use cases with Tuberculosis and Type 1 diabetes, with SABER simplifying dosing and enhancing the efficacy of the drugs. Hartgerink described the current SABER system as “generation one,” and plans to work to make it widely applicable. He is looking into how SABER could be applied to cancer immunotherapy.

“What I’m really passionate about right now is cancer prevention — trying to think about how we can use materials to prime the immune system to prevent cancer from ever happening as opposed to just treating it,” Pogostin added.

A team of researchers at the University of Houston is working to develop a new treatment for Rhabdomyosarcoma, an aggressive cancer with a higher incidence in young children. Photo via Getty Images.

UH research team receives grant to fight aggressive pediatric cancer

cancer research

Researchers at the University of Houston have received a $3.2 million grant from the National Institutes of Health to help find innovative ways to treat Rhabdomyosarcoma, or RMS.

According to a statement from the university, RMS is a malignant soft tissue sarcoma that has a higher incidence in young children and is responsible for 8 percent of pediatric cancer cases with a relatively low survival rate.

One way UH is working on the issue is by studying how and why RMS cells, which are found most often in muscle tissue, divide uncontrollably without ever maturing into normal muscle cells. The researchers aim to tackle a target inside RMS cells known as TAK1, which plays a key role in regulating cell growth.

“By targeting TAK1, we aim to stop the cancer at its source and help the cells develop normally,” Ashok Kumar, the Else and Philip Hargrove Endowed Professor of Drug Discovery at the UH College of Pharmacy and director of the Institute of Muscle Biology and Cachexia, said in a news release. “This approach could lead to new and better treatments for RMS.”

According to UH, preliminary results demonstrated that TAK1 is highly activated in embryonal RMS cells, which are found in younger children; alveolar RMS cells, which are found in older children and teens; and human RMS samples. This suggests that the protein plays a major role in the development of this form of cancer.

The team still aims to uncover how the protein helps RMS cancer grow and plans to evaluate how blocking TAK1 can be used as a therapeutic.

“Blocking TAK1, either by changing the genes (genetic approaches) or using drugs (pharmacological approaches), can stop certain harmful behaviors in cancer cells,” Kumar added. “This was tested both in lab-grown cells and in living models, showing that TAK1 is a key target to control RMS cancer’s spread and aggressiveness, and inhibits tumor formation.”

Texas A&M's Dog Aging Project received NIH funding to expand a clinical trial studying how the drug rapamycin can extend the lives of companion dogs. Photo via Getty Images.

Texas A&M expands innovative Dog Aging Project via $7 million grant

pet project

The Texas A&M College of Veterinary Medicine and Biomedical Sciences has received a $7 million grant from the National Institutes of Health to support its Dog Aging Project.

The DAP is a research project that was launched in 2019 by Texas A&M and the University of Washington School of Medicine and has enrolled over 50,000 dogs to date, according to a release. The program studies various breeds of companion dogs and studies the effects of aging to help develop a better understanding of what can lead to an expanded, healthy canine life, which can also assist with human aging knowledge.

The NIH funds will be used to expand a clinical trial studying how the drug rapamycin, also called sirolimus, can extend the lives of companion dogs.

The project, known as Test of Rapamycin In Aging Dogs (TRIAD), is the third DAP clinical trial involving the drug rapamycin. The drug has previously been used as an immunosuppressant during organ transplants in humans. Past DAP studies reported that the drug appears to improve cardiac function in dogs.

“Rapamycin works by modifying the cells’ energy balance and energy handling,” Dr. Kate Creevy, DAP chief veterinary officer and a professor in the VMBS’ Department of Small Animal Clinical Sciences, said in a news release. "It seems to mimic the effects that happen in people or animals who do intermittent fasting. There is a lot of interest in intermittent fasting as a technique that can improve health, particularly healthy aging, and some of the pharmaceutical effects of rapamycin make the same changes at the cellular level.”

So far, 170 dogs are in the trial at 20 sites, with the goal of expanding to 580 dogs enrolled in multiple cities across the country. Dogs must be over 7 years old and in good general health to participate. They should also weigh at least 44 pounds. Owners are required to bring their dogs to one of TRIAD’s participating clinical sites every six months for three years. The Texas clinical sites are in College Station and North Texas.

“Dogs experience many of the age-related cognitive, sensory, neuropathologic and mobility changes that are common in older humans,” Dr. May Reed, a geriatrician at the University of Washington School of Medicine and another primary investigator in the study, said in the release. “The possibility that rapamycin might delay any of the alterations that contribute to cognitive impairment and functional decline is very exciting and has huge translational potential.”

“We get to learn how to support both dog and human aging at the same time. Our research is also powered by owners’ commitments to the health of their dogs, and that’s what makes our work both possible and meaningful,” Creevy added. “We’re very grateful to them.”

Rice researchers are cleaning up when it comes to grants and competitions. Photo via Rice.edu

Rice University innovators claim prizes across health care, energy research

big wins

Undergraduate students from Rice University were awarded the top prize in a health innovation challenge.

Design by Biomedical Undergraduate Teams (DEBUT) Challenge, which is organized by the National Institutes of Health (NIH) and the non-profit organization VentureWell, selected medical device team UroFlo as its winner, claiming the $20,000 prize. The technology, a continuous bladder irrigation system, was recognized for its potential to revolutionize post-operative care and improve patient outcomes.

The winning team from Rice consists of 2024 bioengineering graduates Anushka Agrawal, Sahana Prasanna, Robert Heeter, Archit Chabbi, Kevin Li, and Richard Chan. The UroFlo system provides care to patients after surgery and reduces the burden on health care professionals by implementing state-of-the-art sensors and machine learning algorithms with a touchscreen user interface. This helps with data collection, processing and visualization. UroFlo promises to enhance the management of urinary tract infections (UTIs) and help prevent blood clots.

“We have learned so much from this process and we are really proud of what we have accomplished,” says Chabbi in a news release. “It’s truly rewarding to know that our work can impact patients’ experience and help improve quality of care. Over the many hours we spent working in the Oshman Engineering Design Kitchen (OEDK) at Rice, we’ve not only developed an amazing set of skills, but have also forged really strong connections with one-another and the nearby medical community at the Texas Medical Center.”

The award will be presented on Oct. 25 in Baltimore during the annual Biomedical Engineering Society (BMES) conference.

UroFlo was also with first place in the Johns Hopkins Healthcare Design Competition in the Post-Surgical Infection Management category; first place in the American Society for Artificial Internal Organs Student Design Competition; “Best Medical Device Technology Award” in the 2024 Huff Engineering Design Showcase and competition held by the OEDK; “Outstanding Bioengineering Design Project,” Rice Department of Bioengineering; “Best Presentation” in the Texas Children’s Hospital Surgical Research Day; finalist and “Best Engineering Project” in Rice’s 2024 Shapiro Research Showcases; and semi-finalist in the H. Albert Napier Rice Launch Challenge. UroFlo will continue after Rice, as the project will be developed further.

“We are all very passionate about biomedical engineering, and dedicated and committed to making a difference” Chan said in a news release. “We actually decided to continue to develop UroFlo after our graduation from Rice a few months ago with the hope of improving our innovative solution for urological care.”

In other news, Rice University’s Naomi Halas won $7.5 million over five years from the United States Department of Defense (DOD) Air Force Office of Scientific Research (AFOSR) with her project proposal Multidisciplinary University Research Initiative (MURI) for her project titled “Combining Nonequilibrium Chemistries with Atomic Precision,” which competed in the category “plasmon-controlled single-atom catalysis.”

“Combining Nonequilibrium Chemistries with Atomic Precision” addressed the need for more energy-efficient and less protocol-intensive chemical processes that involve using light to drive chemical reactions and single-atom “reactors” to catalyze chemical reactions that are nearly 100 percent specific in terms of reaction products.

Plasmons work when they make metal nanoparticles act like antennas, and certain designed reactor sites on their surfaces can then carry out chemical reactions at a fraction of the “energy expenditure of conventional industrial catalysts” according to a news release.

Rice University and Baylor College of Medicine have also received $2.8 million in funding from the National Heart, Lung, and Blood Institute (NHLBI) for their research on reducing inflammation and lung damage in acute respiratory distress syndrome (ARDS) patients.

“Cell Based Immunomodulation to Suppress Lung Inflammation and Promote Repair,” will be co-led byRice’s Omid Veiseh, a professor of bioengineering and faculty director of the Rice Biotech Launch Pad, and professor of surgery at Baylor Ravi Kiran Ghanta. They will develop a new translational cell therapy platform “ to allow a better local administration of cytokines to the lungs in order to suppress inflammation and potentially prevent lung damage in ARDS patients” according to a news release.

VenoStent has raised additional funding. Image courtesy of VenoStent

Houston health tech startup secures $20M series A, NIH grant amid clinical trials

fresh funding

A clinical-stage Houston health tech company with a novel therapeutic device has raised venture capital funding and secured a grant from the National Institutes of Health.

VenoStent Inc., which is currently in clinical trials with its bioabsorbable perivascular wrap, announced the closing of a $20 million series A round co-led by Good Growth Capital and IAG Capital Partners. The two Charleston, South Carolina-based firms also led VenoStent's 2023 series A round that closed last year at $16 million.

Additionally, the company secured a $3.6 million Small Business Innovation Research (SBIR) Phase II Grant from NIH, which will help fund its multi-center, 200-patient, randomized controlled trial in the United States.

Tim Boire, VenoStent CEO and co-founder, describes 2024 so far as "a momentous year" so far for his company.

"In the span of a few months, we initiated our first clinical sites, enrolled the first patients in our large RCT and closed our Series A with Norwest," Boire says in a news release. "We also received the NIH grant, which enables us to execute our trial with the highest degree of quality and rigor to make it as scientifically robust and impactful to patients as possible.

'Each of these are major company milestones that collectively represent many years of intensive and fruitful R&D and collaboration," he continues. "These recent milestones will propel our company forward to an exciting next phase."

Tim Boire is the CEO and co-founder of VenoStent. Photo via LinkedIn

The company's innovation, the SelfWrap, goes around arteriovenous (AV) access sites at the time of AV fistula creation surgery. The device is intended "to accelerate the usability and increase the durability of the fistula sites for chronic kidney disease (CKD) patients requiring hemodialysis," reads the release, "mimicking the arterial environment in veins, which experience a 10x increase in pressure and flow during AV creation and causes the veins to become unusable in dialysis."

Along with the investment, VenoStent announced two new board observers. Norwest General Partner Dr. Zack Scott and Investor Dr. Ehi Akhirome are bringing their expertise to the growing company.

"Norwest's investment is tremendous validation for VenoStent, and we are thrilled to have both Zack and Ehi joining the company's board," VenoStent COO and Co-Founder Geoffrey Lucks adds in the release. "Zack and Ehi have extensive knowledge in our space, and their added value will match the capital and cache of Norwest dollar-for-dollar."

Last year at the same time VenoStent announced its last funding round, the SelfWrap was approved by the U.S. Food and Drug Administration to begin its U.S. Investigational Device Exemption (IDE) study.

"Over half a million people in the U.S. rely on hemodialysis to survive and require an arteriovenous fistula creation surgery in order to receive the treatment. However, the AV fistula procedure has a one-year failure rate of more than 60 percent, which significantly impacts patients' survival rates and quality of life," Scott says in the release. "VenoStent's groundbreaking technology for AV fistula formation, SelfWrap, has the potential to significantly improve these odds. We look forward to working with the VenoStent team as it proves the efficacy of this breakthrough technology in order to improve the lives of hundreds of thousands of CKD patients."

Last summer, Boire told InnovationMap on the Houston Innovators Podcast that he's looking to launch the product in 2026.

NeuraStasis, which originated out of the TMC Biodesign program, is launching its latest study in Houston. Photo via Getty Images

Health tech startup launches Houston study improve stroke patients recovery

now enrolling

A Houston-born company is enrolling patients in a study to test the efficacy of nerve stimulation to improve outcomes for stroke survivors.

Dr. Kirt Gill and Joe Upchurch founded NeuraStasis in 2021 as part of the TMC Biodesign fellowship program.

“The idea for the company manifested during that year because both Joe and I had experiences with stroke survivors in our own lives,” Gill tells InnovationMap. It began for Gill when his former college roommate had a stroke in his twenties.

“It’s a very unpredictable, sudden disease with ramifications not just for my best friend but for everyone in his life. I saw what it did to his family and caregivers and it's one of those things that doesn't have as many solutions for people to continue recovery and to prevent damage and that's an area that I wanted to focus myself on in my career,” Gill explains.

Gill and Upchurch arrived at the trigeminal and vagus nerves as a potential key to helping stroke patients. Gill says that there is a growing amount of academic literature that talks about the efficacy of stimulating those nerves. The co-founders met Dr. Sean Savitz, the director of the UTHealth Institute for Stroke and Cerebrovascular Diseases, during their fellowship. He is now their principal investigator for their clinical feasibility study, located at his facility.

The treatment is targeted for patients who have suffered an ischemic stroke, meaning that it’s caused by a blockage of blood flow to the brain.

“Rehabilitation after a stroke is intended to help the brain develop new networks to compensate for permanently damaged areas,” Gill says. “But the recovery process typically slows to essentially a standstill or plateau by three to six months after that stroke. The result is that the majority of stroke survivors, around 7.6 million in the US alone, live with a form of disability that prevents complete independence afterwards.”

NeuraStasis’ technology is intended to help patients who are past that window. They accomplish that with a non-invasive brain-stimulation device that targets the trigeminal and vagus nerves.

“Think of it kind of like a wearable headset that enables stimulation to be delivered, paired to survivors going through rehabilitation action. So the goal here is to help reinforce and rewire networks as they're performing specific tasks that they're looking to improve upon,” Gill explains.

The study, which hopes to enroll around 25 subjects, is intended to help people with residual arm and hand deficits six months or more after their ischemic stroke. The patients enrolled will receive nerve stimulation three times a week for six weeks. It’s in this window that Gill says he hopes to see meaningful improvement in patients’ upper extremity deficits.

Though NeuraStasis currently boasts just its two co-founders as full-time employees, the company is seeing healthy growth. It was selected for a $1.1 million award from the National Institutes of Health through its Blueprint MedTech program. The award was funded by the National Institute of Neurological Disorders and Stroke. The funding furthers NeuraStasis’ work for two years, and supports product development for work on acute stroke and for another product that will aid in emergency situations.

Gill says that he believes “Houston has been tailor-made for medical healthcare-focused innovation.”

NeuraStasis, he continues, has benefited greatly from its advisors and mentors from throughout the TMC, as well as the engineering talent from Rice, University of Houston and Texas A&M. And the entrepreneur says that he hopes that Houston will benefit as much from NeuraStasis’ technology as the company has from its hometown.

“I know that there are people within the community that could benefit from our device,” he says.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Announcing the 2025 Houston Innovation Awards finalists

Inspirational Innovators

InnovationMap is proud to reveal the finalists for the 2025 Houston Innovation Awards.

Taking place on November 13 at Greentown Labs, the fifth annual Houston Innovation Awards will honor the best of Houston's innovation ecosystem, including startups, entrepreneurs, mentors, and more.

This year's finalists were determined by our esteemed panel of judges, comprised of past award winners and InnovationMap editorial leadership.

The panel reviewed nominee applications across 10 prestigious categories to determine our finalists. They will select the winner for each category, except for Startup of the Year, which will be chosen by the public via online voting launching later this month.

We'll announce our 2025 Trailblazer Award recipient in the coming weeks, and then we'll unveil the rest of this year's winners live at our awards ceremony.

Get to know all of our finalists in more detail through editorial spotlights leading up to the big event. Then, join us on November 13 as we unveil the winners and celebrate all things Houston innovation. Tickets are on sale now — secure yours today.

Without further ado, here are the 2025 Houston Innovation Awards finalists:

Minority-founded Business

Honoring an innovative startup founded or co-founded by BIPOC or LGBTQ+ representation:

  • Capwell Services
  • Deep Anchor Solutions
  • Mars Materials
  • Torres Orbital Mining (TOM)
  • Wellysis USA

Female-founded Business

Honoring an innovative startup founded or co-founded by a woman:

  • Anning Corporation
  • Bairitone Health
  • Brain Haven
  • FlowCare
  • March Biosciences
  • TrialClinIQ

Energy Transition Business

Honoring an innovative startup providing a solution within renewables, climatetech, clean energy, alternative materials, circular economy and beyond:

  • Anning Corporation
  • Capwell Services
  • Deep Anchor Solutions
  • Eclipse Energy
  • Loop Bioproducts
  • Mars Materials
  • Solidec

Health Tech Business

Honoring an innovative startup within the health and medical technology sectors:

  • Bairitone Health
  • Corveus Medical
  • FibroBiologics
  • Koda Health
  • NanoEar
  • Wellysis USA

Deep Tech Business

Honoring an innovative startup providing technology solutions based on substantial scientific or engineering challenges, including those in the AI, robotics and space sectors:

  • ARIX Technologies
  • Little Place Labs
  • Newfound Materials
  • Paladin Drones
  • Persona AI
  • Tempest Droneworx

Startup of the Year (People's Choice)

Honoring a startup celebrating a recent milestone or success. The winner will be selected by the community via an online voting experience:

  • Eclipse Energy
  • FlowCare
  • MyoStep
  • Persona AI
  • Rheom Materials
  • Solidec

Scaleup of the Year

Honoring an innovative later-stage startup that's recently reached a significant milestone in company growth:

  • Coya Therapeutics
  • Fervo Energy
  • Koda Health
  • Mati Carbon
  • Molecule
  • Utility Global

Incubator/Accelerator of the Year

Honoring a local incubator or accelerator that is championing and fueling the growth of Houston startups:

  • Activate
  • Energy Tech Nexus
  • Greentown Labs
  • Healthtech Accelerator (TMCi)
  • Impact Hub Houston

Mentor of the Year

Honoring an individual who dedicates their time and expertise to guide and support budding entrepreneurs. Presented by Houston Community College:

  • Anil Shetty, Inform AI
  • Jason Ethier, EnergyTech Nexus
  • Jeremy Pitts, Activate
  • Joe Alapat, Liongard
  • Neil Dikeman, Energy Transition Ventures
  • Nisha Desai, Intention

Trailblazer Recipient

  • To be announced
---------

Interested in sponsoring the 2025 Houston Innovation Awards? Contact sales@innovationmap.com for details.

Houston scientists earn prestigious geophysics career awards

winner, winner

Two Rice University professors have been recognized by the American Geophysical Union, one of the world’s largest associations for Earth and space science.

Rice climatologist Sylvia Dee was awarded the 2025 Nanne Weber Early Career Award by the AGU’s Paleoceanography and Paleoclimatology Section. Richard Gordon, a Rice professor of geophysics also received the 2025 Walter H. Bucher Medal by the AGU. They will both be recognized at the AGU25 event on Dec.15-19 in New Orleans.

The Nanne Weber Early Career Award recognizes contributions to paleoceanography and paleoclimatology research by scientists within 10 years of receiving their doctorate.

“Paleoclimate research provides essential context for understanding Earth’s climate system and its future under continued greenhouse warming," Dee said in a news release. “By studying how climate has evolved naturally in the past, we can better predict the risks and challenges that lie ahead.”

Dee’s work explores how Earth’s natural modes of variability interact with the changing climate and lead to extreme weather. It shows how these interactions can add to climate risks, like flooding and rainfall patterns all around the world.

The Bucher Medal is awarded to just one scientist for their original contributions to the knowledge of the Earth’s crust and lithosphere.

Gordon’s research has reshaped how scientists understand the movement and interaction of Earth’s tectonic plates. He helped reveal the existence of diffuse plate boundaries—areas where the planet’s crust slowly deforms across broad regions instead of along a single fault line. His work also explored true polar wander, a phenomenon in which Earth gradually shifts its orientation relative to its spin axis.

Gordon introduced the concept of paleomagnetic Euler poles, a method for tracing how tectonic plates have moved over millions of years. He also led the development of major global plate motion models, including NUVEL (Northwestern University Velocity) and MORVEL (Mid-Ocean Ridge Velocity).

“Receiving the Walter Bucher Medal is a profound honor,” Gordon said in a news release. “To be included on a list of past recipients whose work I have long admired makes this recognition especially meaningful. There are still countless mysteries about how our planet works, and I look forward to continuing to explore them alongside the next generation of scientists.”

3 Houston-area companies appear on Fortune’s inaugural AI ranking

eyes on ai

Three companies based in the Houston area appear on Fortune’s inaugural list of the top adopters of AI among Fortune 500 companies.

The three companies are:

  • No. 7 energy company ExxonMobil, based in Spring
  • No. 7 tech company Hewlett Packard Enterprise, based in Spring
  • No. 47 energy company Chevron, based in Houston

All three companies have taken a big dive into the AI pool.

In 2024, ExxonMobil’s executive chairman and CEO, Darren Woods, explained that AI would play a key role in achieving a $15 billion reduction in operating costs by 2027.

“There is a concerted effort to make sure that we're really working hard to apply that new technology to the opportunity set within the company to drive effectiveness and efficiency,” Woods told Wall Street analysts.

Hewlett Packard Enterprise is also employing AI to decrease costs. In March, the company announced a restructuring plan — including the elimination of 3,000 jobs — aimed at cutting about $350 million in annual expenses. The restructuring is scheduled to wrap up by the end of October.

Hewlett Packard Enterprise’s Catalyst cost-cutting program includes a push to use AI across the company to improve efficiency, Marie Myers, the company’s executive vice president and chief financial officer, told Wall Street analysts in June.

“Our ambition is clear: A leaner, faster, and more competitive organization. Nothing is off limits. We are focused on rethinking the business — not just reducing our costs, but transforming the way we operate,” Myers said.

At Chevron, AI tools are being used to quickly analyze data and extract insights from it, according to tech news website VentureBeat. Also, Chevron employs advanced AI systems known as large language models (LLMs) to create engineering standards, specifications and safety alerts. AI is even being put to work in Chevron’s exploration initiatives.

Bill Braun, Chevron’s chief information officer, said at a VentureBeat-sponsored event in 2024 that AI-savvy data scientists, or “digital scholars,” are always embedded within workplace teams “to act as a catalyst for working differently.”

The Fortune AIQ 50 ranking is based on ServiceNow’s Enterprise AI Maturity Index, an annual measurement of how prepared organizations are to adopt and scale AI. To evaluate how Fortune 500 companies are rolling out AI and how much they value AI investments, Fortune teamed up with Enterprise Technology Research. The results went into computing an AIQ score for each company.

At the top of the ranking is Alphabet (owner of Google and YouTube), followed by Visa, JPMorgan Chase, Nvidia and Mastercard.

Aside from ExxonMobil, Hewlett Packard Enterprise, and Chevron, two other Texas companies made the list: Arlington-based homebuilder D.R. Horton (No. 29) and Austin-based software company Oracle (No. 37).

“The Fortune AIQ 50 demonstrates how companies across industry sectors are beginning to find real value from the deployment of AI technology,” Jeremy Kahn, Fortune’s AI editor, said in a news release. “Clearly, some sectors, such as tech and finance, are pulling ahead of others, but even in so-called 'old economy' industries like mining and transport, there are a few companies that are pulling away from their peers in the successful use of AI.”