Rice researchers are cleaning up when it comes to grants and competitions. Photo via Rice.edu

Undergraduate students from Rice University were awarded the top prize in a health innovation challenge.

Design by Biomedical Undergraduate Teams (DEBUT) Challenge, which is organized by the National Institutes of Health (NIH) and the non-profit organization VentureWell, selected medical device team UroFlo as its winner, claiming the $20,000 prize. The technology, a continuous bladder irrigation system, was recognized for its potential to revolutionize post-operative care and improve patient outcomes.

The winning team from Rice consists of 2024 bioengineering graduates Anushka Agrawal, Sahana Prasanna, Robert Heeter, Archit Chabbi, Kevin Li, and Richard Chan. The UroFlo system provides care to patients after surgery and reduces the burden on health care professionals by implementing state-of-the-art sensors and machine learning algorithms with a touchscreen user interface. This helps with data collection, processing and visualization. UroFlo promises to enhance the management of urinary tract infections (UTIs) and help prevent blood clots.

“We have learned so much from this process and we are really proud of what we have accomplished,” says Chabbi in a news release. “It’s truly rewarding to know that our work can impact patients’ experience and help improve quality of care. Over the many hours we spent working in the Oshman Engineering Design Kitchen (OEDK) at Rice, we’ve not only developed an amazing set of skills, but have also forged really strong connections with one-another and the nearby medical community at the Texas Medical Center.”

The award will be presented on Oct. 25 in Baltimore during the annual Biomedical Engineering Society (BMES) conference.

UroFlo was also with first place in the Johns Hopkins Healthcare Design Competition in the Post-Surgical Infection Management category; first place in the American Society for Artificial Internal Organs Student Design Competition; “Best Medical Device Technology Award” in the 2024 Huff Engineering Design Showcase and competition held by the OEDK; “Outstanding Bioengineering Design Project,” Rice Department of Bioengineering; “Best Presentation” in the Texas Children’s Hospital Surgical Research Day; finalist and “Best Engineering Project” in Rice’s 2024 Shapiro Research Showcases; and semi-finalist in the H. Albert Napier Rice Launch Challenge. UroFlo will continue after Rice, as the project will be developed further.

“We are all very passionate about biomedical engineering, and dedicated and committed to making a difference” Chan said in a news release. “We actually decided to continue to develop UroFlo after our graduation from Rice a few months ago with the hope of improving our innovative solution for urological care.”

In other news, Rice University’s Naomi Halas won $7.5 million over five years from the United States Department of Defense (DOD) Air Force Office of Scientific Research (AFOSR) with her project proposal Multidisciplinary University Research Initiative (MURI) for her project titled “Combining Nonequilibrium Chemistries with Atomic Precision,” which competed in the category “plasmon-controlled single-atom catalysis.”

“Combining Nonequilibrium Chemistries with Atomic Precision” addressed the need for more energy-efficient and less protocol-intensive chemical processes that involve using light to drive chemical reactions and single-atom “reactors” to catalyze chemical reactions that are nearly 100 percent specific in terms of reaction products.

Plasmons work when they make metal nanoparticles act like antennas, and certain designed reactor sites on their surfaces can then carry out chemical reactions at a fraction of the “energy expenditure of conventional industrial catalysts” according to a news release.

Rice University and Baylor College of Medicine have also received $2.8 million in funding from the National Heart, Lung, and Blood Institute (NHLBI) for their research on reducing inflammation and lung damage in acute respiratory distress syndrome (ARDS) patients.

“Cell Based Immunomodulation to Suppress Lung Inflammation and Promote Repair,” will be co-led byRice’s Omid Veiseh, a professor of bioengineering and faculty director of the Rice Biotech Launch Pad, and professor of surgery at Baylor Ravi Kiran Ghanta. They will develop a new translational cell therapy platform “ to allow a better local administration of cytokines to the lungs in order to suppress inflammation and potentially prevent lung damage in ARDS patients” according to a news release.

VenoStent has raised additional funding. Image courtesy of VenoStent

Houston health tech startup secures $20M series A, NIH grant amid clinical trials

fresh funding

A clinical-stage Houston health tech company with a novel therapeutic device has raised venture capital funding and secured a grant from the National Institutes of Health.

VenoStent Inc., which is currently in clinical trials with its bioabsorbable perivascular wrap, announced the closing of a $20 million series A round co-led by Good Growth Capital and IAG Capital Partners. The two Charleston, South Carolina-based firms also led VenoStent's 2023 series A round that closed last year at $16 million.

Additionally, the company secured a $3.6 million Small Business Innovation Research (SBIR) Phase II Grant from NIH, which will help fund its multi-center, 200-patient, randomized controlled trial in the United States.

Tim Boire, VenoStent CEO and co-founder, describes 2024 so far as "a momentous year" so far for his company.

"In the span of a few months, we initiated our first clinical sites, enrolled the first patients in our large RCT and closed our Series A with Norwest," Boire says in a news release. "We also received the NIH grant, which enables us to execute our trial with the highest degree of quality and rigor to make it as scientifically robust and impactful to patients as possible.

'Each of these are major company milestones that collectively represent many years of intensive and fruitful R&D and collaboration," he continues. "These recent milestones will propel our company forward to an exciting next phase."

Tim Boire is the CEO and co-founder of VenoStent. Photo via LinkedIn

The company's innovation, the SelfWrap, goes around arteriovenous (AV) access sites at the time of AV fistula creation surgery. The device is intended "to accelerate the usability and increase the durability of the fistula sites for chronic kidney disease (CKD) patients requiring hemodialysis," reads the release, "mimicking the arterial environment in veins, which experience a 10x increase in pressure and flow during AV creation and causes the veins to become unusable in dialysis."

Along with the investment, VenoStent announced two new board observers. Norwest General Partner Dr. Zack Scott and Investor Dr. Ehi Akhirome are bringing their expertise to the growing company.

"Norwest's investment is tremendous validation for VenoStent, and we are thrilled to have both Zack and Ehi joining the company's board," VenoStent COO and Co-Founder Geoffrey Lucks adds in the release. "Zack and Ehi have extensive knowledge in our space, and their added value will match the capital and cache of Norwest dollar-for-dollar."

Last year at the same time VenoStent announced its last funding round, the SelfWrap was approved by the U.S. Food and Drug Administration to begin its U.S. Investigational Device Exemption (IDE) study.

"Over half a million people in the U.S. rely on hemodialysis to survive and require an arteriovenous fistula creation surgery in order to receive the treatment. However, the AV fistula procedure has a one-year failure rate of more than 60 percent, which significantly impacts patients' survival rates and quality of life," Scott says in the release. "VenoStent's groundbreaking technology for AV fistula formation, SelfWrap, has the potential to significantly improve these odds. We look forward to working with the VenoStent team as it proves the efficacy of this breakthrough technology in order to improve the lives of hundreds of thousands of CKD patients."

Last summer, Boire told InnovationMap on the Houston Innovators Podcast that he's looking to launch the product in 2026.

NeuraStasis, which originated out of the TMC Biodesign program, is launching its latest study in Houston. Photo via Getty Images

Health tech startup launches Houston study improve stroke patients recovery

now enrolling

A Houston-born company is enrolling patients in a study to test the efficacy of nerve stimulation to improve outcomes for stroke survivors.

Dr. Kirt Gill and Joe Upchurch founded NeuraStasis in 2021 as part of the TMC Biodesign fellowship program.

“The idea for the company manifested during that year because both Joe and I had experiences with stroke survivors in our own lives,” Gill tells InnovationMap. It began for Gill when his former college roommate had a stroke in his twenties.

“It’s a very unpredictable, sudden disease with ramifications not just for my best friend but for everyone in his life. I saw what it did to his family and caregivers and it's one of those things that doesn't have as many solutions for people to continue recovery and to prevent damage and that's an area that I wanted to focus myself on in my career,” Gill explains.

Gill and Upchurch arrived at the trigeminal and vagus nerves as a potential key to helping stroke patients. Gill says that there is a growing amount of academic literature that talks about the efficacy of stimulating those nerves. The co-founders met Dr. Sean Savitz, the director of the UTHealth Institute for Stroke and Cerebrovascular Diseases, during their fellowship. He is now their principal investigator for their clinical feasibility study, located at his facility.

The treatment is targeted for patients who have suffered an ischemic stroke, meaning that it’s caused by a blockage of blood flow to the brain.

“Rehabilitation after a stroke is intended to help the brain develop new networks to compensate for permanently damaged areas,” Gill says. “But the recovery process typically slows to essentially a standstill or plateau by three to six months after that stroke. The result is that the majority of stroke survivors, around 7.6 million in the US alone, live with a form of disability that prevents complete independence afterwards.”

NeuraStasis’ technology is intended to help patients who are past that window. They accomplish that with a non-invasive brain-stimulation device that targets the trigeminal and vagus nerves.

“Think of it kind of like a wearable headset that enables stimulation to be delivered, paired to survivors going through rehabilitation action. So the goal here is to help reinforce and rewire networks as they're performing specific tasks that they're looking to improve upon,” Gill explains.

The study, which hopes to enroll around 25 subjects, is intended to help people with residual arm and hand deficits six months or more after their ischemic stroke. The patients enrolled will receive nerve stimulation three times a week for six weeks. It’s in this window that Gill says he hopes to see meaningful improvement in patients’ upper extremity deficits.

Though NeuraStasis currently boasts just its two co-founders as full-time employees, the company is seeing healthy growth. It was selected for a $1.1 million award from the National Institutes of Health through its Blueprint MedTech program. The award was funded by the National Institute of Neurological Disorders and Stroke. The funding furthers NeuraStasis’ work for two years, and supports product development for work on acute stroke and for another product that will aid in emergency situations.

Gill says that he believes “Houston has been tailor-made for medical healthcare-focused innovation.”

NeuraStasis, he continues, has benefited greatly from its advisors and mentors from throughout the TMC, as well as the engineering talent from Rice, University of Houston and Texas A&M. And the entrepreneur says that he hopes that Houston will benefit as much from NeuraStasis’ technology as the company has from its hometown.

“I know that there are people within the community that could benefit from our device,” he says.

Mielad Ziaee, a 20-year-old student at the University of Houston, was tapped for a unique National Institutes of Health program. Photo via UH.edu

Houston student selected for prestigious health care research program

bright future

A Houston-area undergraduate student has been tapped for a prestigious national program that pairs early-career investigators with health research professionals.

Mielad Ziaee was selected for the National Institutes of Health’s 2023-2024 All of Us Research Scholar Program, which connects young innovators with experts "working to advance the field of precision medicine," according to a statement from UH. Ziaee – a 20-year-old majoring in psychology and minoring in biology, medicine and society who plans to graduate in 2025 — plans to research how genomics, or the studying of a person's DNA, can be used to impact health.

“I’ll be one of the ones that define what this field of personalized, precision medicine will look like in the future,” Ziaee said in a statement. “It’s exciting and it’s a big responsibility that will involve engaging diverse populations and stakeholders from different systems – from researchers to health care providers to policymakers.”

Ziaee aims to become a physician who can use an understanding of social health conditions to guide his clinical practice. At a young age, he was inspired to go into the field by his family's own experience.

According to UH, Ziaee is the oldest child of Iranian American immigrants. He saw firsthand the challenges of how language and cultural barriers can impact patients' access to and level of care.

“I think a lot of people define health as purely biological, but a lot of other factors influence our well-being, such as mental health, financial health, and even access to good food, medical care and the internet,” he said in a statement. “I am interested in seeing the relationship among all these things and how they impact our health. So far, a lot of health policies and systems have not really looked beyond biology.”

"I want everyone to have an equal chance to access health care and take charge of their well-being. We need to have the systems in place that let people do that,” he added.

Ziaee is already on his way to helping Houston-based and national health systems and organizations make headway in this area.

He was named as a student regent on the UH System Board of Regents last year, sits on the board of the Houston chapter of the American Red Cross, and is an Albert Schweitzer Fellow.

Last year he was a Centers for Disease Control and Prevention John R. Lewis scholar, for which he presented his research project about predicting food insecurity in pediatric clinical settings and recommendations to improve the assessment based off his summer research with the Johns Hopkins University School of Medicine and the Kennedy Krieger Institute.

Prior to this, he completed a 10-week guided research experience using data visualization and predictive modeling techniques to assess food insecurity in the Third Ward.

“I just took every opportunity that came to me,” Ziaee said. “All my experiences connect with my central desire to increase health access and improve health care. I am very intentional about connecting the dots to my passion.”

Earlier this year, three UH student researchers were named among 16 other early-stage research projects at U.S. colleges and universities to receive a total of $17.4 million from the DOE's Office of Fossil Energy and Carbon Management (FECM). The projects were each awarded between about $750,000 to up to $1.5 million.

A research team housed out of the newly launched Rice Biotech Launch Pad received funding to scale tech that could slash cancer deaths in half. Photo via Rice University

Rice researchers score $45M from NIH for cancer-fighting tech

freshly funded

A research funding agency has deployed capital into a team at Rice University that's working to develop a technology that could cut cancer-related deaths in half.

Rice researchers received $45 million from the National Institutes of Health's Advanced Research Projects Agency for Health, or ARPA-H, to scale up development of a sense-and-respond implant technology. Rice bioengineer Omid Veiseh leads the team developing the technology as principal investigator.

“Instead of tethering patients to hospital beds, IV bags and external monitors, we’ll use a minimally invasive procedure to implant a small device that continuously monitors their cancer and adjusts their immunotherapy dose in real time,” he says in a news release. “This kind of ‘closed-loop therapy’ has been used for managing diabetes, where you have a glucose monitor that continuously talks to an insulin pump. But for cancer immunotherapy, it’s revolutionary.”

Joining Veiseh on the 19-person research project named THOR, which stands for “targeted hybrid oncotherapeutic regulation,” is Amir Jazaeri, co-PI and professor of gynecologic oncology at the University of Texas MD Anderson Cancer Center. The device they are developing is called HAMMR, or hybrid advanced molecular manufacturing regulator.

“Cancer cells are continually evolving and adapting to therapy. However, currently available diagnostic tools, including radiologic tests, blood assays and biopsies, provide very infrequent and limited snapshots of this dynamic process," Jazaeri adds. "As a result, today’s therapies treat cancer as if it were a static disease. We believe THOR could transform the status quo by providing real-time data from the tumor environment that can in turn guide more effective and tumor-informed novel therapies.”

With a national team of engineers, physicians, and experts across synthetic biology, materials science, immunology, oncology, and more, the team will receive its funding through the Rice Biotech Launch Pad, a newly launched initiative led by Veiseh that exists to help life-saving medical innovation scale quickly.

"Rice is proud to be the recipient of the second major funding award from the ARPA-H, a new funding agency established last year to support research that catalyzes health breakthroughs," Rice President Reginald DesRoches says. "The research Rice bioengineer Omid Veiseh is doing in leading this team is truly groundbreaking and could potentially save hundreds of thousands of lives each year. This is the type of research that makes a significant impact on the world.”

The initial focus of the technology will be on ovarian cancer, and this funding agreement includes a first-phase clinical trial of HAMMR for the treatment of recurrent ovarian cancer that's expected to take place in the fourth year of THOR’s multi-year project.

“The technology is broadly applicable for peritoneal cancers that affect the pancreas, liver, lungs and other organs,” Veiseh says. “The first clinical trial will focus on refractory recurrent ovarian cancer, and the benefit of that is that we have an ongoing trial for ovarian cancer with our encapsulated cytokine ‘drug factory’ technology. We'll be able to build on that experience. We have already demonstrated a unique model to go from concept to clinical trial within five years, and HAMMR is the next iteration of that approach.”

A Houston-based software startup received a multimillion-dollar grant from the National Institutes of Health for its work within neurophysiology. Getty Images

Data science startup based in Houston focus on neuroscience software nabs $3.78M grant

brain game

Armed with a nearly $3.8 million federal grant, a Houston startup aims to boost neuroscience research around the world.

Vathes LLC, a developer of data management software that collaborates with neuroscience research labs in North America and Europe, recently received the $3.78 million grant from the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative at the National Institutes of Health (NIH). That initiative is part of the National Institute of Neurological Disorders and Stroke.

Vathes says the NIH funding will enable the startup to ramp up its DataJoint Pipelines for Neurophysiology project. The project aims to make open-source software for data science and engineering available to researchers who specialize in neurophysiology, a branch of neuroscience that looks at how the nervous system functions. The pipeline project holds the promise of benefiting research in areas like autism, Alzheimer's disease, and amyotrophic lateral sclerosis (ALS, or Lou Gehrig's disease).

The project's principal investigator is Dimitri Yatsenko, vice president of research and development at Vathes. Technologically speaking, neuroscientists are playing catch-up with their counterparts in fields like astrophysics, genomics, and bioinformatics, according to Yatsenko.

Neuroscience "is undergoing a fast transformation in terms of moving toward much more data-centric, data-intensive, computation-intensive, and collaborative projects," Yatsenko says. This means that neuroscientists are "now finding themselves having to quickly adapt to an environment," he adds, "where they have to share big data and computations with their collaborators in very dynamic settings and perform them in a very fluid way."

Yatsenko says the NIH-funded project will help smaller research groups tap into the technical expertise of larger research labs.

Vathes' DataJoint Neuro platform and services, which help create so-called DataJoint pipelines, enable neuroscientists to streamline, analyze, and visualize complex data. Among its customers are Princeton University's Neuroscience Institute and Columbia University's Zuckerman Institute. The federally funded project will empower smaller labs to capitalize on existing DataJoint pipelines as ready-to-go turnkey packages, Yatsenko says.

In essence, Vathes' technology acts as a translator. Big research labs collect data in databases that can vary by computer language and platform. Through the Vathes setup, that data can be incorporated by a lab of any size into algorithmic, machine learning, and artificial intelligence mechanisms, regardless of the computer language or platform.

Edgar Walker, CEO of Vathes, says this simplifies the construction and use of databases, giving scientists "more room to focus on the logic of their data pipeline rather than on the physical implementation of it."

Founded in 2016, Vathes is housed at the Texas Medical Center's Innovation Institute. It employs 10 people. The startup previously received a $100,000 grant from the U.S. Defense Advanced Research Projects Agency (DARPA).

Yatsenko says the project backed by the $3.78 million NIH grant will propel the startup's growth, as it "gives us a big window of opportunity" to provide tools and services that support the startup's open-source software.

"As the NIH and other funding agencies are shifting a lot of their focus to collaborative projects that are distributed among multiple institutions," Walker says, "we've established a reputation as the company that can facilitate such research, be efficient, and actually be cost-effective as well, and make the projects very smooth."

"We expect to continue to grow this business at the same exponential rate," he adds. "We'll keep our fingers crossed and see how things go."


CEO Edgar Walker (left) and Dimitri Yatsenko, vice president of research and development, lead Houston-based Vathes. Photos courtesy of Vathes

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

2 Houston space tech cos. celebrate major tech milestones

big wins

Two Houston aerospace companies — Intuitive Machines and Venus Aerospace — have reached testing milestones for equipment they’re developing.

Intuitive Machines recently completed the first round of “human in the loop” testing for its Moon RACER (Reusable Autonomous Crewed Exploration Rover) lunar terrain vehicle. The company conducted the test at NASA’s Johnson Space Center.

RACER is one of three lunar terrain vehicles being considered by NASA for the space agency’s Artemis initiative, which will send astronauts to the moon.

NASA says human-in-the-loop testing can reveal design flaws and technical problems, and can lead to cost-efficient improvements. In addition, it can elevate the design process from 2D to 3D modeling.

Intuitive Machines says the testing “proved invaluable.” NASA astronauts served as test subjects who provided feedback about the Moon RACER’s functionality.

The Moon RACER, featuring a rechargeable electric battery and a robotic arm, will be able to accommodate two astronauts and more than 880 pounds of cargo. It’s being designed to pull a trailer loaded with more than 1,760 pounds of cargo.

Another Houston company, Venus Aerospace, recently achieved ignition of its VDR2 rocket engine. The engine, being developed in tandem with Ohio-based Velontra — which aims to produce hypersonic planes — combines the functions of a rotating detonation rocket engine with those of a ramjet.

A rotating detonation rocket engine, which isn’t equipped with moving parts, rapidly burns fuel via a supersonic detonation wave, according to the Air Force Research Laboratory. In turn, the engine delivers high performance in a small volume, the lab says. This savings in volume can offer range, speed, and affordability benefits compared with ramjets, rockets, and gas turbines.

A ramjet is a type of “air breathing” jet engine that does not include a rotary engine, according to the SKYbrary electronic database. Instead, it uses the forward motion of the engine to compress incoming air.

A ramjet can’t function at zero airspeed, so it can’t power an aircraft during all phases of flight, according to SKYbrary. Therefore, it must be paired with another kind of propulsion, such as a rotating detonation rocket engine, to enable acceleration at a speed where the ramjet can produce thrust.

“With this successful test and ignition, Venus Aerospace has demonstrated the exceptional ability to start a [ramjet] at takeoff speed, which is revolutionary,” the company says.

Venus Aerospace plans further testing of its engine in 2025.

Venus Aerospace, recently achieved ignition of its VDR2 rocket engine. Photo courtesy of Venus Aerospace

METRO rolls out electric shuttles for downtown Houston commuters

on a roll

The innovative METRO microtransit program will be expanding to the downtown area, the Metropolitan Transit Authority of Harris County announced on Monday.

“Microtransit is a proven solution to get more people where they need to go safely and efficiently,” Houston Mayor John Whitmire said in a statement. “Connected communities are safer communities, and bringing microtransit to Houston builds on my promise for smart, fiscally-sound infrastructure growth.”

The program started in June 2023 when the city’s nonprofit Evolve Houston partnered with the for-profit Ryde company to offer free shuttle service to residents of Second and Third Ward. The shuttles are all-electric and take riders to bus stops, medical buildings, and grocery stores. Essentially, it works as a traditional ride-share service but focuses on multiple passengers in areas where bus access may involve hazards or other obstacles. Riders access the system through the Ride Circuit app.

So far, the microtransit system has made a positive impact in the wards according to METRO. This has led to the current expansion into the downtown area. The system is not designed to replace the standard bus service, but to help riders navigate to it through areas where bus service is more difficult.

“Integrating microtransit into METRO’s public transit system demonstrates a commitment to finding innovative solutions that meet our customers where they are,” said METRO Board Chair Elizabeth Gonzalez Brock. “This on-demand service provides a flexible, easier way to reach METRO buses and rail lines and will grow ridership by solving the first- and last-mile challenges that have hindered people’s ability to choose METRO.”

The City of Houston approved a renewal of the microtransit program in July, authorizing Evolve Houston to spend $1.3 million on it. Some, like council member Letitia Plummer, have questioned whether microtransit is really the future for METRO as the service cuts lines such as the University Corridor.

However, the microtransit system serves clear and longstanding needs in Houston. Getting to and from bus stops in the city with its long blocks, spread-out communities, and fickle pedestrian ways can be difficult, especially for poor or disabled riders. While the bus and rail work fine for longer distances, shorter ones can be underserved.

Even in places like downtown where stops are plentiful, movement between them can still involve walks of a mile or more, and may not serve for short trips.

“Our microtransit service is a game-changer for connecting people, and we are thrilled to launch it in downtown Houston,” said Evolve executive director Casey Brown. “The all-electric, on-demand service complements METRO’s existing fixed-route systems while offering a new solution for short trips. This launch marks an important milestone for our service, and we look forward to introducing additional zones in the new year — improving access to public transit and local destinations.”

———

This article originally ran on CultureMap.