UTHealth Houston has secured millions in grant funding — plus has reached a new milestone for one of its projects. Photo via utsystem.edu

UTHealth Houston is making waves in many disciplines right now. From cancer to Alzheimer’s disease to stroke, the institution is improving outcomes for patients in new ways. Last week, UTHealth announced three exciting updates to its roster of accomplishments.

On October 8, UTHealth announced that it had received a $4.8 million grant from the National Cancer Institute, aimed at helping cancer survivors to continue their healing and enhancing primary care capacity. It will be put into action by UTHealth researchers working with eight community health centers around Texas that treat un- and underinsured patients. The initiative is called Project CASCADE, which stands for Community and Academic Synergy for Cancer Survivorship Care Delivery Enhancement.

“Project CASCADE focuses on how primary healthcare teams provide whole-person and coordinated care to underserved patients who have a history of cancer,” says Bijal Balasubramanian, professor of epidemiology and the Rockwell Distinguished Chair in Society and Health at UTHealth Houston School of Public Health, a multiple principal investigator of the study. “Primary care is uniquely suited to deliver whole-person and coordinated care for cancer survivors because, at its core, it prioritizes, personalizes and integrates healthcare for all conditions, not just the cancer.”

She continued by adding that 70 percent of cancer survivors live with other chronic conditions. The study will help by taking a holistic approach, rather than relegating people’s care to many different teams. Project CASCADE is one of only four National Cancer Institute-funded U01 grants that have been awarded to applicants focused on primary care for cancer survivors.

“Community health centers are the primary-care homes for patients who are underinsured or uninsured. In collaboration with community health center clinics, this study will develop a model of cancer survivorship care that can be disseminated and scaled up to be used across other health systems in Texas,” Balasubramanian says.

The intervention will use a designated care coordinator champion to oversee every aspect of patients’ health journey. Project ECHO will provide a backbone for treatment. That’s a telementoring strategy that improves primary care clinicians’ knowledge about post-cancer care, recognition and management of the effects of cancer and its treatments, and communication between oncologists and the primary care team. Project CASCADE is also a partnership between The University of Texas System institutions, including UT Southwestern Medical Center and The University of Texas MD Anderson Cancer Center.

The previous week, UTHealth made history by performing the first infusion in Houston of a newly FDA-approved drug, Kisunla, for the treatment of early symptomatic Alzheimer’s disease. The lucky recipient was 79-year-old Terrie Frankel. Though Kisunla is not a cure for Alzheimer’s, it has been noted to slow progress when administered early in the disease’s encroachment.

“Mrs. Frankel is the ideal patient for this treatment,” her doctor, David Hunter says. “We want to see patients as soon as they, or their family, notice the slightest trace of forgetfulness. The earlier the patient is in their Alzheimer’s disease, the more they benefit from treatments like Kisunla.”

UTHealth was one of the sites in the trial that charted the fact that Kisunla reduced amyloid plaques on average by 84 percent at 10 months after infusion. Frankel will receive her infusions monthly for the next 18 months, and her doctors will keep tabs on her progress with PET scans and use MRIs to scan for possible side effects. Next year, researchers will begin recruiting participants over the age of 55 with a family history of dementia, but no memory loss themselves, for a new trial, one of several currently working against Alzheimer’s that are taking place at UTHealth.

Stroke is no less of a worry to many patients. Last week, UTHealth received another grant that will improve the odds for patients who have had a stroke with the successful re-opening of a blocked vessel through endovascular surgery. The $2.5 million grant from the National Institute of Neurological Disorders and Stroke, part of the National Institutes of Health, will fund a five-year study that will include the creation of a machine-learning program that will be able to predict which stroke patients with large blood vessel blockages will benefit most from endovascular therapy.

The investigators will form a database of imaging and outcomes of patients whose blockages were successfully opened, called reperfusion, from three U.S. hospitals. This will allow them to identify clinical and imaging-based predictors of damage in the brain after reperfusion. From there, the deep-learning model will help clinicians to know which patients might go against the tenet that the sooner you treat a patient, the better.

“This is shaking our core of deciding who we treat, and when, and how, but also, how we are evaluating them? Our current methods of determining benefit with imaging are not good enough,” says principal investigator and associate professor in the Department of Neurology at McGovern Medical School at UTHealth Houston, Sunil Sheth.

And this is just some of the groundbreaking work taking place at UTHealth each day.

A medical device designed by a UH professor will close the loop with high frequency brain waves to prevent seizures from occurring. Photo via uh.edu

University of Houston engineer receives $3.7M to work on seizure-preventing tech

brainy med device

A professor at the University of Houston has received a federal grant aimed at helping stop epileptic seizures before they start.

The BRAIN Initiative at the National Institute of Neurological Disorders and Stroke awarded the $3.7 million grant to Nuri Firat Ince, an associate professor of biomedical engineering at UH. The grant will go toward Ince's work to create a seizure-halting device based on his research.

According to UH, Ince has reduced by weeks the time it takes to locate the seizure onset zone (SOZ), the part of the brain that causes seizures in patients with epilepsy. He's done this by detecting high-frequency oscillations (HFO) forming "repetitive waveform patterns" that identify their location in the SOZ.

Ince plans to use those HFOs to help control seizures. But he first must determine whether the HFOs can be detected with an implantable closed-loop device, enabling delivery of electrical stimulation that can control seizures. The device is called a brain interchange system. A closed-loop system supplies stimulation only when it detects the onset of a seizure.

Ince's neurotechnology partner, Cortec GMBH of Freiburg, Germany, is supplying the brain interchange system. Houston's Baylor College of Medicine eventually will be the site where medical professionals implant the device in pediatric and adult epilepsy patients.

"If the outcomes of our research in acute settings become successful, we will execute a clinical trial and run our methods with the implanted … system in a chronic ambulatory setting," Ince says in a UH news release.

Research published recently in the journal AJOB Neuroscience found that a closed-loop brain implant being used to treat refractory epilepsy does not alter patients' personalities or self-perception.

Nuri Firat Ince associate professor of biomedical engineering. Photo via uh.edu

"Next-generation brain stimulation devices can modulate brain activity without human intervention, which raises new ethical and policy questions," lead author Tobias Haeusermann of the University of California, San Francisco, says in a news release. "But while there is a great deal of speculation about the potential consequences of these innovative treatments, very little is currently known about patients' experiences of any device approved for clinical use."

The study, however, found no evidence that the device Haeusermann and his colleagues studied had changed patients' personalities or self-perception.

Haeusermann and his fellow researchers based their study on a closed-loop device that's currently available. In 2013, the U.S. Food and Drug Administration (FDA) approved this brain stimulation system for treatment of refractory epilepsy. It's the first clinically approved and commercially available closed-loop brain stimulation device for epilepsy patients. Refractory epilepsy occurs when medication no longer controls seizures.

According to a research article published in 2018, epilepsy ranks among the most common neurological disorders, affecting about 1% of the global population. For patients who suffer seizures that cannot be treated with drugs, a frequent treatment is surgical removal of the SOZ.

In this country, about 3 million adults and 470,000 children have epilepsy, according to the U.S. Centers for Disease Control and Prevention, including nearly 293,000 Texans. In the U.S., epilepsy is the fourth most common neurological disorder, preceded by migraine, stroke and Alzheimer's disease, the Epilepsy Foundation of Michigan says.

About 150,000 Americans are diagnosed each year with epilepsy.

Epilepsy is prevalent among people with autism, cerebral palsy, Down syndrome, and intellectual disabilities.

About 30 types of seizure occur among the more than 60 types of epilepsy, the Michigan foundation says. A seizure briefly disturbs electrical activity in the braining, causing temporary changes in movement, awareness, feelings, behavior, and other bodily functions.

Daily medication is the standard treatment for epilepsy, according to the Michigan foundation. Still, 30 percent to 40 percent of people with epilepsy continue to experience seizures.

Each year, U.S. health care costs associated with epilepsy add up to roughly $28 billion, according to the American Journal of Managed Care.

"Most people with epilepsy are able to lead productive and fulfilling lives, but for many, epilepsy can be a devastating condition," the foundation says.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

​Planned UT Austin med center, anchored by MD Anderson, gets $100M gift​

med funding

The University of Texas at Austin’s planned multibillion-dollar medical center, which will include a hospital run by Houston’s University of Texas MD Anderson Cancer Center, just received a $100 million boost from a billionaire husband-and-wife duo.

Tench Coxe, a former venture capitalist who’s a major shareholder in chipmaking giant Nvidia, and Simone Coxe, co-founder and former CEO of the Blanc & Otus PR firm, contributed the $100 million—one of the largest gifts in UT history. The Coxes live in Austin.

“Great medical care changes lives,” says Simone Coxe, “and we want more people to have access to it.”

The University of Texas System announced the medical center project in 2023 and cited an estimated price tag of $2.5 billion. UT initially said the medical center would be built on the site of the Frank Erwin Center, a sports and entertainment venue on the UT Austin campus that was demolished in 2024. The 20-acre site, north of downtown and the state Capitol, is near Dell Seton Medical Center, UT Dell Medical School and UT Health Austin.

Now, UT officials are considering a bigger, still-unidentified site near the Domain mixed-use district in North Austin, although they haven’t ruled out the Erwin Center site. The Domain development is near St. David’s North Medical Center.

As originally planned, the medical center would house a cancer center built and operated by MD Anderson and a specialty hospital built and operated by UT Austin. Construction on the two hospitals is scheduled to start this year and be completed in 2030. According to a 2025 bid notice for contractors, each hospital is expected to encompass about 1.5 million square feet, meaning the medical center would span about 3 million square feet.

Features of the MD Anderson hospital will include:

  • Inpatient care
  • Outpatient clinics
  • Surgery suites
  • Radiation, chemotherapy, cell, and proton treatments
  • Diagnostic imaging
  • Clinical drug trials

UT says the new medical center will fuse the university’s academic and research capabilities with the medical and research capabilities of MD Anderson and Dell Medical School.

UT officials say priorities for spending the Coxes’ gift include:

  • Recruiting world-class medical professionals and scientists
  • Supporting construction
  • Investing in technology
  • Expanding community programs that promote healthy living and access to care

Tench says the opportunity to contribute to building an institution from the ground up helped prompt the donation. He and others say that thanks to MD Anderson’s participation, the medical center will bring world-renowned cancer care to the Austin area.

“We have a close friend who had to travel to Houston for care she should have been able to get here at home. … Supporting the vision for the UT medical center is exactly the opportunity Austin needed,” he says.

The rate of patients who leave the Austin area to seek care for serious medical issues runs as high as 25 percent, according to UT.

New Rice Brain Institute partners with TMC to award inaugural grants

brain trust

The recently founded Rice Brain Institute has named the first four projects to receive research awards through the Rice and TMC Neuro Collaboration Seed Grant Program.

The new grant program brings together Rice faculty with clinicians and scientists at The University of Texas Medical Branch, Baylor College of Medicine, UTHealth Houston and The University of Texas MD Anderson Cancer Center. The program will support pilot projects that address neurological disease, mental health and brain injury.

The first round of awards was selected from a competitive pool of 40 proposals, and will support projects that reflect Rice Brain Institute’s research agenda.

“These awards are meant to help teams test bold ideas and build the collaborations needed to sustain long-term research programs in brain health,” Behnaam Aazhang, Rice Brain Institute director and co-director of the Rice Neuroengineering Initiative, said in a news release.

The seed funding has been awarded to the following principal investigators:

  • Kevin McHugh, associate professor of bioengineering and chemistry at Rice, and Peter Kan, professor and chair of neurosurgery at the UTMB. McHugh and Kan are developing an injectable material designed to seal off fragile, abnormal blood vessels that can cause life-threatening bleeding in the brain.
  • Jerzy Szablowski, assistant professor of bioengineering at Rice, and Jochen Meyer, assistant professor of neurology at Baylor. Szablowski and Meyer are leading a nonsurgical, ultrasound approach to deliver gene-based therapies to deep brain regions involved in seizures to control epilepsy without implanted electrodes or invasive procedures.
  • Juliane Sempionatto, assistant professor of electrical and computer engineering at Rice, and Aaron Gusdon, associate professor of neurosurgery at UTHealth Houston. Sempionatto and Gusdon are leading efforts to create a blood test that can identify patients at high risk for delayed brain injury following aneurysm-related hemorrhage, which could lead to earlier intervention and improved outcomes.
  • Christina Tringides, assistant professor of materials science and nanoengineering at Rice, and Sujit Prabhu, professor of neurosurgery at MD Anderson, who are working to reduce the risk of long-term speech and language impairment during brain tumor removal by combining advanced brain recordings, imaging and noninvasive stimulation.

The grants were facilitated by Rice’s Educational and Research Initiatives for Collaborative Health (ENRICH) Office. Rice says that the unique split-funding model of these grants could help structure future collaborations between the university and the TMC.

The Rice Brain Institute launched this fall and aims to use engineering, natural sciences and social sciences to research the brain and reduce the burden of neurodegenerative, neurodevelopmental and mental health disorders. Last month, the university's Shepherd School of Music also launched the Music, Mind and Body Lab, an interdisciplinary hub that brings artists and scientists together to study the "intersection of the arts, neuroscience and the medical humanities." Read more here.

Your data center is either closer than you think or much farther away

houston voices

A new study shows why some facilities cluster in cities for speed and access, while others move to rural regions in search of scale and lower costs. Based on research by Tommy Pan Fang (Rice Business) and Shane Greenstein (Harvard).

Key findings:

  • Third-party colocation centers are physical facilities in close proximity to firms that use them, while cloud providers operate large data centers from a distance and sell access to virtualized computing resources as on‑demand services over the internet.
  • Hospitals and financial firms often require urban third-party centers for low latency and regulatory compliance, while batch processing and many AI workloads can operate more efficiently from lower-cost cloud hubs.
  • For policymakers trying to attract data centers, access to reliable power, water and high-capacity internet matter more than tax incentives.

Recent outages and the surge in AI-driven computing have made data center siting decisions more consequential than ever, especially as energy and water constraints tighten. Communities invest public dollars on the promise of jobs and growth, while firms weigh long-term commitments to land, power and connectivity.

Against that backdrop, a critical question comes into focus: Where do data centers get built — and what actually drives those decisions?

A new study by Tommy Pan Fang (Rice Business) and Shane Greenstein (Harvard Business School) provides the first large-scale statistical analysis of data center location strategies across the United States. It offers policymakers and firms a clearer starting point for understanding how different types of data centers respond to economic and strategic incentives.

Forthcoming in the journal Strategy Science, the study examines two major types of infrastructure: third-party colocation centers that lease server space to multiple firms, and hyperscale cloud centers owned by providers like Amazon, Google and Microsoft.

Two Models, Two Location Strategies

The study draws on pre-pandemic data from 2018 and 2019, a period of relative geographic stability in supply and demand. This window gives researchers a clean baseline before remote work, AI demand and new infrastructure pressures began reshaping internet traffic patterns.

The findings show that data centers follow a bifurcated geography. Third-party centers cluster in dense urban markets, where buyers prioritize proximity to customers despite higher land and operating costs. Cloud providers, by contrast, concentrate massive sites in a small number of lower-density regions, where electricity, land and construction are cheaper and economies of scale are easier to achieve.

Third-party data centers, in other words, follow demand. They locate in urban markets where firms in finance, healthcare and IT value low latency, secure storage, and compliance with regulatory standards.

Using county-level data, the researchers modeled how population density, industry mix and operating costs predict where new centers enter. Every U.S. metro with more than 700,000 residents had at least one third-party provider, while many mid-sized cities had none.

ImageThis pattern challenges common assumptions. Third-party facilities are more distributed across urban America than prevailing narratives suggest.

Customer proximity matters because some sectors cannot absorb delay. In critical operations, even slight pauses can have real consequences. For hospital systems, lag can affect performance and risk exposure. And in high-frequency trading, milliseconds can determine whether value is captured or lost in a transaction.

“For industries where speed is everything, being too far from the physical infrastructure can meaningfully affect performance and risk,” Pan Fang says. “Proximity isn’t optional for sectors that can’t absorb delay.”

The Economics of Distance

For cloud providers, the picture looks very different. Their decisions follow a logic shaped primarily by cost and scale. Because cloud services can be delivered from afar, firms tend to build enormous sites in low-density regions where power is cheap and land is abundant.

These facilities can draw hundreds of megawatts of electricity and operate with far fewer employees than urban centers. “The cloud can serve almost anywhere,” Pan Fang says, “so location is a question of cost before geography.”

The study finds that cloud infrastructure clusters around network backbones and energy economics, not talent pools. Well-known hubs like Ashburn, Virginia — often called “Data Center Alley” — reflect this logic, having benefited from early network infrastructure that made them natural convergence points for digital traffic.

Local governments often try to lure data centers with tax incentives, betting they will create high-tech jobs. But the study suggests other factors matter more to cloud providers, including construction costs, network connectivity and access to reliable, affordable electricity.

When cloud centers need a local presence, distance can sometimes become a constraint. Providers often address this by working alongside third-party operators. “Third-party centers can complement cloud firms when they need a foothold closer to customers,” Pan Fang says.

That hybrid pattern — massive regional hubs complementing strategic colocation — may define the next phase of data center growth.

Looking ahead, shifts in remote work, climate resilience, energy prices and AI-driven computing may reshape where new facilities go. Some workloads may move closer to users, while others may consolidate into large rural hubs. Emerging data-sovereignty rules could also redirect investment beyond the United States.

“The cloud feels weightless,” Pan Fang says, “but it rests on real choices about land, power and proximity.”

---

This article originally appeared on Rice Business Wisdom. Written by Scott Pett.

Pan Fang and Greenstein (2025). “Where the Cloud Rests: The Economic Geography of Data Centers,” forthcoming in Strategy Science.