UTHealth Houston has secured millions in grant funding — plus has reached a new milestone for one of its projects. Photo via utsystem.edu

UTHealth Houston is making waves in many disciplines right now. From cancer to Alzheimer’s disease to stroke, the institution is improving outcomes for patients in new ways. Last week, UTHealth announced three exciting updates to its roster of accomplishments.

On October 8, UTHealth announced that it had received a $4.8 million grant from the National Cancer Institute, aimed at helping cancer survivors to continue their healing and enhancing primary care capacity. It will be put into action by UTHealth researchers working with eight community health centers around Texas that treat un- and underinsured patients. The initiative is called Project CASCADE, which stands for Community and Academic Synergy for Cancer Survivorship Care Delivery Enhancement.

“Project CASCADE focuses on how primary healthcare teams provide whole-person and coordinated care to underserved patients who have a history of cancer,” says Bijal Balasubramanian, professor of epidemiology and the Rockwell Distinguished Chair in Society and Health at UTHealth Houston School of Public Health, a multiple principal investigator of the study. “Primary care is uniquely suited to deliver whole-person and coordinated care for cancer survivors because, at its core, it prioritizes, personalizes and integrates healthcare for all conditions, not just the cancer.”

She continued by adding that 70 percent of cancer survivors live with other chronic conditions. The study will help by taking a holistic approach, rather than relegating people’s care to many different teams. Project CASCADE is one of only four National Cancer Institute-funded U01 grants that have been awarded to applicants focused on primary care for cancer survivors.

“Community health centers are the primary-care homes for patients who are underinsured or uninsured. In collaboration with community health center clinics, this study will develop a model of cancer survivorship care that can be disseminated and scaled up to be used across other health systems in Texas,” Balasubramanian says.

The intervention will use a designated care coordinator champion to oversee every aspect of patients’ health journey. Project ECHO will provide a backbone for treatment. That’s a telementoring strategy that improves primary care clinicians’ knowledge about post-cancer care, recognition and management of the effects of cancer and its treatments, and communication between oncologists and the primary care team. Project CASCADE is also a partnership between The University of Texas System institutions, including UT Southwestern Medical Center and The University of Texas MD Anderson Cancer Center.

The previous week, UTHealth made history by performing the first infusion in Houston of a newly FDA-approved drug, Kisunla, for the treatment of early symptomatic Alzheimer’s disease. The lucky recipient was 79-year-old Terrie Frankel. Though Kisunla is not a cure for Alzheimer’s, it has been noted to slow progress when administered early in the disease’s encroachment.

“Mrs. Frankel is the ideal patient for this treatment,” her doctor, David Hunter says. “We want to see patients as soon as they, or their family, notice the slightest trace of forgetfulness. The earlier the patient is in their Alzheimer’s disease, the more they benefit from treatments like Kisunla.”

UTHealth was one of the sites in the trial that charted the fact that Kisunla reduced amyloid plaques on average by 84 percent at 10 months after infusion. Frankel will receive her infusions monthly for the next 18 months, and her doctors will keep tabs on her progress with PET scans and use MRIs to scan for possible side effects. Next year, researchers will begin recruiting participants over the age of 55 with a family history of dementia, but no memory loss themselves, for a new trial, one of several currently working against Alzheimer’s that are taking place at UTHealth.

Stroke is no less of a worry to many patients. Last week, UTHealth received another grant that will improve the odds for patients who have had a stroke with the successful re-opening of a blocked vessel through endovascular surgery. The $2.5 million grant from the National Institute of Neurological Disorders and Stroke, part of the National Institutes of Health, will fund a five-year study that will include the creation of a machine-learning program that will be able to predict which stroke patients with large blood vessel blockages will benefit most from endovascular therapy.

The investigators will form a database of imaging and outcomes of patients whose blockages were successfully opened, called reperfusion, from three U.S. hospitals. This will allow them to identify clinical and imaging-based predictors of damage in the brain after reperfusion. From there, the deep-learning model will help clinicians to know which patients might go against the tenet that the sooner you treat a patient, the better.

“This is shaking our core of deciding who we treat, and when, and how, but also, how we are evaluating them? Our current methods of determining benefit with imaging are not good enough,” says principal investigator and associate professor in the Department of Neurology at McGovern Medical School at UTHealth Houston, Sunil Sheth.

And this is just some of the groundbreaking work taking place at UTHealth each day.

A medical device designed by a UH professor will close the loop with high frequency brain waves to prevent seizures from occurring. Photo via uh.edu

University of Houston engineer receives $3.7M to work on seizure-preventing tech

brainy med device

A professor at the University of Houston has received a federal grant aimed at helping stop epileptic seizures before they start.

The BRAIN Initiative at the National Institute of Neurological Disorders and Stroke awarded the $3.7 million grant to Nuri Firat Ince, an associate professor of biomedical engineering at UH. The grant will go toward Ince's work to create a seizure-halting device based on his research.

According to UH, Ince has reduced by weeks the time it takes to locate the seizure onset zone (SOZ), the part of the brain that causes seizures in patients with epilepsy. He's done this by detecting high-frequency oscillations (HFO) forming "repetitive waveform patterns" that identify their location in the SOZ.

Ince plans to use those HFOs to help control seizures. But he first must determine whether the HFOs can be detected with an implantable closed-loop device, enabling delivery of electrical stimulation that can control seizures. The device is called a brain interchange system. A closed-loop system supplies stimulation only when it detects the onset of a seizure.

Ince's neurotechnology partner, Cortec GMBH of Freiburg, Germany, is supplying the brain interchange system. Houston's Baylor College of Medicine eventually will be the site where medical professionals implant the device in pediatric and adult epilepsy patients.

"If the outcomes of our research in acute settings become successful, we will execute a clinical trial and run our methods with the implanted … system in a chronic ambulatory setting," Ince says in a UH news release.

Research published recently in the journal AJOB Neuroscience found that a closed-loop brain implant being used to treat refractory epilepsy does not alter patients' personalities or self-perception.

Nuri Firat Ince associate professor of biomedical engineering. Photo via uh.edu

"Next-generation brain stimulation devices can modulate brain activity without human intervention, which raises new ethical and policy questions," lead author Tobias Haeusermann of the University of California, San Francisco, says in a news release. "But while there is a great deal of speculation about the potential consequences of these innovative treatments, very little is currently known about patients' experiences of any device approved for clinical use."

The study, however, found no evidence that the device Haeusermann and his colleagues studied had changed patients' personalities or self-perception.

Haeusermann and his fellow researchers based their study on a closed-loop device that's currently available. In 2013, the U.S. Food and Drug Administration (FDA) approved this brain stimulation system for treatment of refractory epilepsy. It's the first clinically approved and commercially available closed-loop brain stimulation device for epilepsy patients. Refractory epilepsy occurs when medication no longer controls seizures.

According to a research article published in 2018, epilepsy ranks among the most common neurological disorders, affecting about 1% of the global population. For patients who suffer seizures that cannot be treated with drugs, a frequent treatment is surgical removal of the SOZ.

In this country, about 3 million adults and 470,000 children have epilepsy, according to the U.S. Centers for Disease Control and Prevention, including nearly 293,000 Texans. In the U.S., epilepsy is the fourth most common neurological disorder, preceded by migraine, stroke and Alzheimer's disease, the Epilepsy Foundation of Michigan says.

About 150,000 Americans are diagnosed each year with epilepsy.

Epilepsy is prevalent among people with autism, cerebral palsy, Down syndrome, and intellectual disabilities.

About 30 types of seizure occur among the more than 60 types of epilepsy, the Michigan foundation says. A seizure briefly disturbs electrical activity in the braining, causing temporary changes in movement, awareness, feelings, behavior, and other bodily functions.

Daily medication is the standard treatment for epilepsy, according to the Michigan foundation. Still, 30 percent to 40 percent of people with epilepsy continue to experience seizures.

Each year, U.S. health care costs associated with epilepsy add up to roughly $28 billion, according to the American Journal of Managed Care.

"Most people with epilepsy are able to lead productive and fulfilling lives, but for many, epilepsy can be a devastating condition," the foundation says.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice scientist earns $600K NSF award to study distractions in digital age

fresh funding

Rice University psychologist Kirsten Adam has received a $600,000 National Science Foundation CAREER Award to research how visual distractions like phone notifications, flashing alerts, crowded screens and busy workspaces can negatively impact focus—and how the brain works to try to regain it.

The highly competitive five-year NSF grants are given to career faculty members with the potential to serve as academic models and leaders in research and education. Adam’s work will aim to clarify how the brain refocuses in the age of screens, instant gratification and other lingering distractions. The funding will also be used to train graduate students in advanced cognitive neuroscience methods, expand access to electroencephalography (EEG) and for public data sharing.

“Kirsten is a valued member of the School of Social Sciences, and we are thrilled that she has been awarded the prestigious NSF CAREER,” Rachel Kimbro, dean of social sciences, said in a news release. “Because distractions continue to increase all around us, her research is timely and imperative to understanding their widespread impacts on the human brain.”

In Adam’s lab, participants complete simplified visual search tasks while their brain activity is recorded using EEG, allowing researchers to measure attention shifts in real time. This process then captures the moment attention is drawn from a goal and how much effort it takes to refocus.

According to Rice, Adam’s work will test long-standing theories about distraction. The research is meant to have real-world implications for jobs and aspects of everyday life where attention to detail is key, including medical imaging, airport security screening and even driving.

“At any given moment, there’s far more information in the world than our brains can process,” Adam added in the release. “Attention is what determines what reaches our awareness and what doesn’t.”

Additionally, the research could inform the design of new technologies that would support focus and decision-making, according to Rice.

“We’re not trying to make attention limitless,” Adam added. “We’re trying to understand how it actually works, so we can stop designing environments and expectations that fight against it.”

12 Houston climatetech startups join Greentown Labs' growing incubator

Startup Talk

More than 40 climatetech startups joined the Greentown Labs Houston community in the second half of 2025, 12 of which hail from the Bayou City.

The companies are among a group of nearly 70 total that joined the climatetech incubator, which is co-located in Houston and Boston, in Q3 and Q4.

The new companies that have joined the Houston incubator specialize in a variety of clean energy applications, from green hydrogen-producing water-splitting cycles to drones that service wind turbines.

The local startups that joined Greentown Houston include:

  • Houston-based Wise Energie, which delivers turnkey microgrids that blend vertical-axis wind, solar PV, and battery storage into a single, silent system.
  • The Woodlands-based Resollant, which is developing compact, zero-emissions hydrogen and carbon reactors to provide low-cost, scalable clean hydrogen and high-purity carbon for the energy and manufacturing sectors.
  • Houston-based ClarityCastle, which designs and manufactures modular, soundproof work pods that replace traditional drywall construction with reusable, low-waste alternatives made from recycled materials.
  • Houston-based WattSto Energy, which manufactures vanadium redox flow batteries to deliver long-duration storage for both grid-scale projects and off-grid microgrids.
  • Houston-based AMPeers, which delivers advanced, high-temperature superconductors in the U.S. at a fraction of traditional costs.
  • Houston-based Biosimo, which is developing bio-based platform chemicals, pioneering sustainable chemistry for a healthier planet and economy.
  • Houston-based Ententia, which offers purpose-built, generative AI for industry.
  • Houston-based GeoKiln Energy Innovation, which is developing a new way to produce clean hydrogen by accelerating natural geologic reactions in iron-rich rock formations using precision electrical heating.
  • Houston-based Timbergrove, which builds AI and IoT solutions that connect and optimize assets—boosting visibility, safety, and efficiency.
  • Houston-based dataVediK, which combines energy-domain expertise with advanced machine learning and intelligent automation to empower organizations to achieve operational excellence and accelerate their sustainability goals.
  • Houston-based Resonant Thermal Systems, which uses a resonant energy-transfer (RET) system to extract critical minerals from industrial and natural brines without using membranes or grid electricity.
  • Houston-based Torres Orbital Mining (TOM),which develops autonomous excavation systems for extreme environments on Earth and the moon, enabling safe, data-driven resource recovery and laying the groundwork for sustainable off-world industry.

Other startups from around the world joined the Houston incubator in the same time period, including:

More than 100 startups joined Greentown this year, according to an end-of-year reflection shared by Greentown CEO Georgina Campbell Flatter.

Flatter joined Greentown in the top leadership role in February 2025. She succeeded former CEO and president Kevin Knobloch, who stepped down in July 2024.

"I moved back to the United States in March 2025 after six years overseas—2,000 miles, three children, and one very patient husband later. Over these months, I’ve had the chance to hear from the entrepreneurs, industry leaders, investors, and partners who make this community thrive. What I’ve experienced has left me brimming with urgent optimism for the future we’re building together," she said in the release.

According to Flatter, Greentown alumni raised more than $2 billion this year and created more than 3,000 jobs.

"Greentown startups and ecosystem leaders—from Boston, Houston, and beyond—are showing that we can move further and faster together. That we don’t have to choose between more energy or lower emissions, or between increasing sustainability and boosting profit. I call this the power of 'and,'" Flatter added. "We’re working for energy and climate, innovation and scale, legacy industry and startups, prosperity for people and planet. The 'and' is where possibility expands."

---

This article originally appeared on EnergyCaptialHTX.com.

Intuitive Machines forms partnership with Italian companies for lunar exploration services

to the moon

Houston-based space technology, infrastructure and services company Intuitive Machines has forged a partnership with two Italian companies to offer infrastructure, communication and navigation services for exploration of the moon.

Intuitive Machines’ agreement with the two companies, Leonardo and Telespazio, paves the way for collaboration on satellite services for NASA, a customer of Intuitive Machines, and the European Space Agency, a customer of Leonardo and Telespazio. Leonardo, an aerospace, defense and security company, is the majority owner of Telespazio, a provider of satellite technology and services.

“Resilient, secure, and scalable space infrastructure and space data networks are vital to customers who want to push farther on the lunar surface and beyond to Mars,” Steve Altemus, co-founder and CEO of Intuitive Machine, said in a news release.

Massimo Claudio Comparini, managing director of Leonardo’s space division, added that the partnership with Intuitive Machines is a big step toward enabling human and robotic missions from the U.S., Europe and other places “to access a robust communications network and high-precision navigation services while operating in the lunar environment.”

Intuitive Machines recently expanded its Houston Spaceport facilities to ramp up in-house production of satellites. The company’s first satellite will launch with its upcoming IM‑3 lunar mission.

Intuitive Machines says it ultimately wants to establish a “center of space excellence” at Houston Spaceport to support missions to the moon, Mars and the region between Earth and the moon.