UTHealth Houston has secured millions in grant funding — plus has reached a new milestone for one of its projects. Photo via utsystem.edu

UTHealth Houston is making waves in many disciplines right now. From cancer to Alzheimer’s disease to stroke, the institution is improving outcomes for patients in new ways. Last week, UTHealth announced three exciting updates to its roster of accomplishments.

On October 8, UTHealth announced that it had received a $4.8 million grant from the National Cancer Institute, aimed at helping cancer survivors to continue their healing and enhancing primary care capacity. It will be put into action by UTHealth researchers working with eight community health centers around Texas that treat un- and underinsured patients. The initiative is called Project CASCADE, which stands for Community and Academic Synergy for Cancer Survivorship Care Delivery Enhancement.

“Project CASCADE focuses on how primary healthcare teams provide whole-person and coordinated care to underserved patients who have a history of cancer,” says Bijal Balasubramanian, professor of epidemiology and the Rockwell Distinguished Chair in Society and Health at UTHealth Houston School of Public Health, a multiple principal investigator of the study. “Primary care is uniquely suited to deliver whole-person and coordinated care for cancer survivors because, at its core, it prioritizes, personalizes and integrates healthcare for all conditions, not just the cancer.”

She continued by adding that 70 percent of cancer survivors live with other chronic conditions. The study will help by taking a holistic approach, rather than relegating people’s care to many different teams. Project CASCADE is one of only four National Cancer Institute-funded U01 grants that have been awarded to applicants focused on primary care for cancer survivors.

“Community health centers are the primary-care homes for patients who are underinsured or uninsured. In collaboration with community health center clinics, this study will develop a model of cancer survivorship care that can be disseminated and scaled up to be used across other health systems in Texas,” Balasubramanian says.

The intervention will use a designated care coordinator champion to oversee every aspect of patients’ health journey. Project ECHO will provide a backbone for treatment. That’s a telementoring strategy that improves primary care clinicians’ knowledge about post-cancer care, recognition and management of the effects of cancer and its treatments, and communication between oncologists and the primary care team. Project CASCADE is also a partnership between The University of Texas System institutions, including UT Southwestern Medical Center and The University of Texas MD Anderson Cancer Center.

The previous week, UTHealth made history by performing the first infusion in Houston of a newly FDA-approved drug, Kisunla, for the treatment of early symptomatic Alzheimer’s disease. The lucky recipient was 79-year-old Terrie Frankel. Though Kisunla is not a cure for Alzheimer’s, it has been noted to slow progress when administered early in the disease’s encroachment.

“Mrs. Frankel is the ideal patient for this treatment,” her doctor, David Hunter says. “We want to see patients as soon as they, or their family, notice the slightest trace of forgetfulness. The earlier the patient is in their Alzheimer’s disease, the more they benefit from treatments like Kisunla.”

UTHealth was one of the sites in the trial that charted the fact that Kisunla reduced amyloid plaques on average by 84 percent at 10 months after infusion. Frankel will receive her infusions monthly for the next 18 months, and her doctors will keep tabs on her progress with PET scans and use MRIs to scan for possible side effects. Next year, researchers will begin recruiting participants over the age of 55 with a family history of dementia, but no memory loss themselves, for a new trial, one of several currently working against Alzheimer’s that are taking place at UTHealth.

Stroke is no less of a worry to many patients. Last week, UTHealth received another grant that will improve the odds for patients who have had a stroke with the successful re-opening of a blocked vessel through endovascular surgery. The $2.5 million grant from the National Institute of Neurological Disorders and Stroke, part of the National Institutes of Health, will fund a five-year study that will include the creation of a machine-learning program that will be able to predict which stroke patients with large blood vessel blockages will benefit most from endovascular therapy.

The investigators will form a database of imaging and outcomes of patients whose blockages were successfully opened, called reperfusion, from three U.S. hospitals. This will allow them to identify clinical and imaging-based predictors of damage in the brain after reperfusion. From there, the deep-learning model will help clinicians to know which patients might go against the tenet that the sooner you treat a patient, the better.

“This is shaking our core of deciding who we treat, and when, and how, but also, how we are evaluating them? Our current methods of determining benefit with imaging are not good enough,” says principal investigator and associate professor in the Department of Neurology at McGovern Medical School at UTHealth Houston, Sunil Sheth.

And this is just some of the groundbreaking work taking place at UTHealth each day.

A medical device designed by a UH professor will close the loop with high frequency brain waves to prevent seizures from occurring. Photo via uh.edu

University of Houston engineer receives $3.7M to work on seizure-preventing tech

brainy med device

A professor at the University of Houston has received a federal grant aimed at helping stop epileptic seizures before they start.

The BRAIN Initiative at the National Institute of Neurological Disorders and Stroke awarded the $3.7 million grant to Nuri Firat Ince, an associate professor of biomedical engineering at UH. The grant will go toward Ince's work to create a seizure-halting device based on his research.

According to UH, Ince has reduced by weeks the time it takes to locate the seizure onset zone (SOZ), the part of the brain that causes seizures in patients with epilepsy. He's done this by detecting high-frequency oscillations (HFO) forming "repetitive waveform patterns" that identify their location in the SOZ.

Ince plans to use those HFOs to help control seizures. But he first must determine whether the HFOs can be detected with an implantable closed-loop device, enabling delivery of electrical stimulation that can control seizures. The device is called a brain interchange system. A closed-loop system supplies stimulation only when it detects the onset of a seizure.

Ince's neurotechnology partner, Cortec GMBH of Freiburg, Germany, is supplying the brain interchange system. Houston's Baylor College of Medicine eventually will be the site where medical professionals implant the device in pediatric and adult epilepsy patients.

"If the outcomes of our research in acute settings become successful, we will execute a clinical trial and run our methods with the implanted … system in a chronic ambulatory setting," Ince says in a UH news release.

Research published recently in the journal AJOB Neuroscience found that a closed-loop brain implant being used to treat refractory epilepsy does not alter patients' personalities or self-perception.

Nuri Firat Ince associate professor of biomedical engineering. Photo via uh.edu

"Next-generation brain stimulation devices can modulate brain activity without human intervention, which raises new ethical and policy questions," lead author Tobias Haeusermann of the University of California, San Francisco, says in a news release. "But while there is a great deal of speculation about the potential consequences of these innovative treatments, very little is currently known about patients' experiences of any device approved for clinical use."

The study, however, found no evidence that the device Haeusermann and his colleagues studied had changed patients' personalities or self-perception.

Haeusermann and his fellow researchers based their study on a closed-loop device that's currently available. In 2013, the U.S. Food and Drug Administration (FDA) approved this brain stimulation system for treatment of refractory epilepsy. It's the first clinically approved and commercially available closed-loop brain stimulation device for epilepsy patients. Refractory epilepsy occurs when medication no longer controls seizures.

According to a research article published in 2018, epilepsy ranks among the most common neurological disorders, affecting about 1% of the global population. For patients who suffer seizures that cannot be treated with drugs, a frequent treatment is surgical removal of the SOZ.

In this country, about 3 million adults and 470,000 children have epilepsy, according to the U.S. Centers for Disease Control and Prevention, including nearly 293,000 Texans. In the U.S., epilepsy is the fourth most common neurological disorder, preceded by migraine, stroke and Alzheimer's disease, the Epilepsy Foundation of Michigan says.

About 150,000 Americans are diagnosed each year with epilepsy.

Epilepsy is prevalent among people with autism, cerebral palsy, Down syndrome, and intellectual disabilities.

About 30 types of seizure occur among the more than 60 types of epilepsy, the Michigan foundation says. A seizure briefly disturbs electrical activity in the braining, causing temporary changes in movement, awareness, feelings, behavior, and other bodily functions.

Daily medication is the standard treatment for epilepsy, according to the Michigan foundation. Still, 30 percent to 40 percent of people with epilepsy continue to experience seizures.

Each year, U.S. health care costs associated with epilepsy add up to roughly $28 billion, according to the American Journal of Managed Care.

"Most people with epilepsy are able to lead productive and fulfilling lives, but for many, epilepsy can be a devastating condition," the foundation says.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston femtech co. debuts new lactation and wellness pods

mom pod

Houston-based femtech company Work&, previously known as Work&Mother, has introduced new products in recent months aimed at supporting working mothers and the overall health of all employees.

The company's new Lactation Pod and Hybrid Pod serve as dual-use lactation and wellness spaces to meet employer demand, the company shared in a news release. The compact pods offer flexible design options that can serve permanent offices and nearly all commercial spaces.

They feature a fully compliant lactation station while also offering wellness functionalities that can support meditation, mental health, telehealth and prayer. In line with Work&'s other spaces, the pods utilize the Work& scheduling platform, which prioritizes lactation bookings to help employers comply with the PUMP Act.

“This isn’t about perks,” Jules Lairson, Work& co-founder and COO, said in the release. “It’s about meeting people where they are—with dignity and intentional design. That includes the mother returning to work, the employee managing anxiety, and everyone in between.”

According to the company, several Fortune 500 companies are already using the pods, and Work& has plans to grow the products' reach.

Earlier this year, Work& introduced its first employee wellness space at MetroNational’s Memorial City Plazas, representing Work&'s shift to offer an array of holistic health and wellness solutions for landlords and tenants.

The company, founded in 2017 by Lairson and CEO Abbey Donnell, was initially focused on outfitting commercial buildings with lactation accommodations for working parents. While Work& still offers these services through its Work&Mother branch, the addition of its Work&Wellbeing arm allowed the company to also address the broader wellness needs of all employees.

The company rebranded as Work& earlier this year.

Rice biotech studio secures investment from Modi Ventures, adds founder to board

fresh funding

RBL LLC, which supports commercialization for ventures formed at the Rice University Biotech Launch Pad, has secured an investment from Houston-based Modi Ventures.

Additionally, RBL announced that it has named Sahir Ali, founder and general partner of Modi Ventures, to its board of directors.

Modi Ventures invests in biotech companies that are working to advance diagnostics, engineered therapeutics and AI-driven drug discovery. The firm has $134 million under management after closing an oversubscribed round this summer.

RBL launched in 2024 and is based out of Houston’s Texas Medical Center Helix Park. William McKeon, president and CEO of the TMC, previously called the launch of RBL a “critical step forward” for Houston’s life sciences ecosystem.

“RBL is dedicated to building companies focused on pioneering and intelligent bioelectronic therapeutics,” Ali said in a LinkedIn post. “This partnership strengthens the Houston biotech ecosystem and accelerates the transition of groundbreaking lab discoveries into impactful therapies.”

Ali will join board members like managing partner Paul Wotton, Rice bioengineering professor Omid Veiseh, scientist and partner at KdT Ventures Rima Chakrabarti, Rice alum John Jaggers, CEO of Arbor Biotechnologies Devyn Smith, and veteran executive in the life sciences sector James Watson.

Ali has led transformative work and built companies across AI, cloud computing and precision medicine. Ali also serves on the board of directors of the Drug Information Association, which helps to collaborate in drug, device and diagnostics developments.

“This investment by Modi Ventures will be instrumental to RBL’s growth as it reinforces confidence in our venture creation model and accelerates our ability to develop successful biotech startups,” Wotton said in the announcement. "Sahir’s addition to the board will also amplify this collaboration with Modi. His strategic counsel and deep understanding of field-defining technologies will be invaluable as we continue to grow and deliver on our mission.”