You've heard "it's not rocket science" throughout your life, but but turns out that aerospace exploration — even in 2021 — is still very hard. Photo via Pexels

If there is anything that goes hand in hand so perfectly, it's Houston and Space. Houston is home to the Johnson Space Center, named after former president Lyndon B. Johnson, and is home to revolutionary space research projects and spaceflight training for both crew members and flight controllers. While it's every kid's dream to become an astronaut, have you ever wondered why rocket science is actually so difficult?

Though the space race of the '70s has been over for some time, the new space race — the race to Mars and the commercialization of space tourism — has just started. Elon Musk, Jeff Bezos, and Richard Branson are spearheading the "Billionaire space race." But even with their billions being put into developing spaceports, NASA rocket partnerships, and planning future Mars missions, rocket science is just as difficult to implement as it was the first time around.

So why, even with billions of dollars at their disposal and many companies pushing for more funding, are scientists and engineers still struggling to make rocket travel an everyday thing? Here are some of the countless reasons why rockets science is insanely difficult, no matter how much money you throw at it.

Small talent pool

The Apollo astronauts were the best of the best — and the hundreds of thousands of engineers and rocket scientists behind the scenes were just as talented. But getting to the point in one's career where you have the right background experience and the right hands-on work and real-life experience to create a safe rocket is difficult. The talent pool that SpaceX, Virgin Galactic, and Blue Origin are working with is extremely small and notoriously competitive. As these programs continue to build in credibility, it may be easier to find talent, but few engineers want to be tied to a failed launch.

The risk of failure

Usually, when you fail at something like a math test or a driver's exam, the ramifications aren't too big. But with space travel, a small problem can quickly turn into a deadly situation for those on board the rocket. Think back to the Challenger explosion in 1986. The success of previous missions (not to mention the administrative corner-cutting) led to a false sense of security when in reality they were still embarking on the insanely difficult feat of launching humans into space. The risk of failure is so great, many commercial manufacturers are cautious to put their weight behind an operation that could in all likelihood come crashing back down to Earth.

Rocket construction

Think back to when you were in school learning about Isaac Newton's Third Law of Motion: for every action, there is an equal and opposite reaction. It's a simple idea, but complex in reality. That law of motion forms the basis for rocket science: the combustion of rocket fuel down into the earth is one action, so the opposite reaction causes the rocket to launch upward into space. But the engineering that's needed for a launch to take place is the hard part.

As mentioned in a 2012 NPR article, there are millions of pieces in every rocket, and "therefore millions of opportunities to make errors — to make errors in calculations, to make errors in construction." The devastating Challenger mission failure is often attributed to faulty O-rings — it's a simple piece of equipment and can often be overlooked.

Even after hundreds of successful launches over the years, rocket construction is just as complex, and the process of shooting humans into space cannot be distilled to a law of motion when there is so much more involved to make that process happen.

Public perception

Throughout the '70s, Americans were enthralled by the idea of the space race and becoming the first country to set foot on the moon. But the public's passion died down after that initial landing. Today, the public perception of current space projects is making doing the actual rocket science and engineering difficult.


Objections against NASA's waste of taxpayer money on "futile" missions and the idea that space travel will only be for the mega-wealthy make any conversation around actual scientific discovery second to politics. Not to even mention the newly minted Space Force. Engineers and scientists have to navigate a hoard of political, financial, and PR battles to even get to do the work of getting people back into space.

The bottom line

Rocket science is thought of as one of the most difficult fields for a reason. Building a piece of technology capable of going into space and even housing people inside is a relatively new feat when considering the span of time. As the billionaire space race continues to unfold, scientists and engineers behind the scenes are creating feats of engineering on a regular basis that will shape the future of space travel. But, if you want to just get a taste of space life, without all the schooling, then a trip to the Johnson Space Center is for you.

------

Natasha Ramirez is a Utah-based tech writer.

Artificial intelligence is changing Houston — one industry at a time. Photo via Getty Images

3 ways artificial intelligence is changing Houston's future

Guest column

Artificial intelligence is the buzzword of the decade. From grocery shopping assistance to personal therapy apps, AI has sunk its teeth into every single industry. Houston is no exception to the AI boom. Enterprise-level companies and startups are already flocking to H-town to make their mark in AI and machine learning.

Since the world is generating more data every minute — 1,736 terabytes to be exact — Houston-based companies are already thinking ahead about how to make sense of all of that information in real-time. That's where AI comes in. By 2021, 80 percent of emerging technologies will have AI foundations — Houston is already ninth on the list of AI-ready cities in the world.

AI and machine learning can process large amounts of data quickly and use that data to inform decisions much like a human would. Here are three ways Houston-based companies are using these emerging technologies to revolutionize the city's future.

Health care

The health care industry is primed for AI's personalization capabilities. Each patient that doctors and nurses encounter has different symptoms, health backgrounds, and prescriptions they have to remember. Managing that amount of information can be dangerous if done incorrectly. With AI, diseases are diagnosed quicker, medications are administered more accurately, and nurses have help monitoring patients.

Decisio Health Inc., a Houston-based health tech startup has already made its mark in the healthcare industry with its AI software helping to tackle the COVID-19 pandemic. Their software, in collaboration with GE Healthcare Inc, allows health care providers to remotely monitor patients. By looking at data from ventilators, patient monitoring systems, health records, and other data sources, doctors can make better decisions about patients from a safe distance.

Climate change

Climate change isn't solved overnight. It's an issue that covers water salinity, deforestation, and even declining bee populations. With a problem as large as climate change, huge amounts of data are collected and need to be analyzed. AI can interpret all of that information, show possible future outcomes, track current weather patterns, and find solutions to environmental destruction.

One Houston-based company in the energy tech industry, Enovate Upstream, has created a new AI platform that will help digitize the oil and gas sector. Their AI-powered platform looks at data from digital drilling, digital completions, and digital production, to give oil companies real-time production forecasting. Their work will hopefully make their oil production more efficient and reduce their carbon emission output. Since oil drilling and fracking are a major cause for concern around climate change, their work will make a difference in slowing climate change and make their industry as a whole more climate-conscious.

Energy

Energy is an industry rich with data opportunities—and as Houston's energy sector grows, AI has become a core part of their work. Houston's large influence in the energy sector has primed it for AI integration from startups like Adapt2 Solutions Inc. By using AI and machine learning in their software, they hope to help energy companies make strategic predictions on how to serve energy to the public efficiently. Their work has become especially important in the wake of COVID-19 and the resulting changing energy needs.

Another Houston-based company using AI to influence the energy industry is the retail energy startup Evolve Energy. Their AI and machine learning system help customers find better prices on fluctuating renewable resource—helping them save money on electricity and reducing emissions. The positive feedback from the public on their AI model has shown how energy companies are using emerging technologies like AI in a positive way in their communities.

The bottom line

Houston is more primed than most cities to integrate AI and machine learning into every industry. While there are valid concerns as to how much we should lean on technology for necessary daily tasks, it's clear that AI isn't going anywhere. And it's clear that Houston is currently taking the right steps to continue its lead in this emerging AI market.

------

Natasha Ramirez is a Utah-based tech writer.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

University opens its newest, largest campus research facility in Houston

research @ rice

As the academic year officially kicks off, professors have started moving in and Rice University has opened its largest core campus research facility, The Ralph S. O’Connor Building for Engineering and Science.

The 250,000-square-foot building is the new home for four key research areas at Rice: advanced materials, quantum science and computing, urban research and innovation, and the energy transition. The university aims for the space to foster collaboration and innovation between the disciplines.

"To me it really speaks to where Rice wants to go as we grow our research endeavors on campus," Michael Wong, Chair of the Department of Chemical and Biomolecular Engineering, whose lab is located in the new facility, said in a video from Rice. "It has to be a mix of engineering and science to do great things. We don’t want to do good things, we want to do great things. And this building will allow us to do that."

At $152 million, the state-of-the-art facility features five floors of labs, classrooms and seminar rooms. Common spaces and a cafe encourage communication between departments, and the top level is home to a reception suite and outdoor terrace with views of the Houston skyline.

It replaces 1940s-era Abercrombie Engineering Laboratory on campus, which was demolished in 2021 to make way for the new facilities. The iconic sculpture "Energy" by Rice alumnus William McVey that was part of the original building was preserved with plans to incorporate it into the new space.

The new building will be dedicated to its namesake Ralph O'Connor on Sept. 14 in Rice's engineering quad at 3 p.m. O'Connor, a Johns Hopkins University grad, became a fan Rice when he moved to Houston to work in the energy industry in the 1950s.

The former president and CEO of the Highland Oil Company and founder of Ralph S. O’Connor & Associates left the university $57 million from his estate after he died in 2018. The gift was the largest donation from an estate in Rice's history and brought his donations to the university, including those to many buildings on campus and endowments and scholarships, to a total of $85 million.

“How fitting that this building will be named after Ralph O’Connor,” Rice President Reginald DesRoches said in a statement last summer. “He was a man who always looked to the future, and the future is what this new engineering and science building is all about. Discoveries made within those walls could transform the world. Anybody who knew Ralph O’Connor knows he would have loved that.”

The dedication event will be open to the public. It will feature remarks from DesRoches, as well as Rice Provost Amy Dittmar, Dean of the Wiess School of Natural Sciences Thomas Killian, Chair of the Rice Board of Trustees Robert Ladd and Dean of the George R. Brown School of Engineering Luay Nakhleh. A reception and tours of the new building will follow.

New certificate course trains a ready workforce as biotech companies in Pearland take off

Top of the Class

Biotech companies in Pearland are thriving, with big names such as Lonza, Millar Inc. Inc., and Abbott all experiencing tremendous growth in recent years.

The only challenge to this success is the increased demand for a faster workforce pipeline. Fortunately, the Pearland Economic Development Corporation (PEDC) has a solution.

PEDC has partnered with Alvin Community College (ACC) and Lonza to create a two-level Biotechnology Certificate Course designed to address the need for a better-equipped entry-level workforce.

This initiative offers two options to quickly train individuals for employment in the biotech field: Level 1, a six-week commitment for Biotech: Material Handler; and Level 2, a twelve-week commitment for Biotech: Lab Technician. Each level consists of 64 contact hours, with lectures delivered online and labs and assessments conducted on-site.

Alvin Community College is offering this course, which commenced on August 21, under its Continued Education and Workforce Development (CEWD) department. This department provides programs that incorporate current and new technical courses, training partnerships with businesses and industries, and other opportunities for individuals to acquire and upgrade skills or pursue personal enrichment.

Before this initiative, the region's two- or four-year programs were only graduating a dozen or so individuals. Early discussions focused on how to expedite workforce development through a local community college's certificate program. Alvin Community College was prepared to respond to the local workforce's needs.

PEDC played a pivotal role in establishing an advisory committee comprised of industry partners responsible for vetting the Biotechnology Certificate Course curriculum. Industry partners included the University of Houston Clear Lake (UHCL) at Pearland, Lonza, Millar Inc., Merit Medical, and the nonprofit organization BioHouston.

These partners are invaluable as plans continue to expand these certification programs.

Given the ever-increasing demand for a biotechnology workforce in the Pearland area, the future wish list includes expanding the certification program to other education partners.

For more information about the Biotechnology Certificate Program at Alvin Community College, visit this link.