You've heard "it's not rocket science" throughout your life, but but turns out that aerospace exploration — even in 2021 — is still very hard. Photo via Pexels

If there is anything that goes hand in hand so perfectly, it's Houston and Space. Houston is home to the Johnson Space Center, named after former president Lyndon B. Johnson, and is home to revolutionary space research projects and spaceflight training for both crew members and flight controllers. While it's every kid's dream to become an astronaut, have you ever wondered why rocket science is actually so difficult?

Though the space race of the '70s has been over for some time, the new space race — the race to Mars and the commercialization of space tourism — has just started. Elon Musk, Jeff Bezos, and Richard Branson are spearheading the "Billionaire space race." But even with their billions being put into developing spaceports, NASA rocket partnerships, and planning future Mars missions, rocket science is just as difficult to implement as it was the first time around.

So why, even with billions of dollars at their disposal and many companies pushing for more funding, are scientists and engineers still struggling to make rocket travel an everyday thing? Here are some of the countless reasons why rockets science is insanely difficult, no matter how much money you throw at it.

Small talent pool

The Apollo astronauts were the best of the best — and the hundreds of thousands of engineers and rocket scientists behind the scenes were just as talented. But getting to the point in one's career where you have the right background experience and the right hands-on work and real-life experience to create a safe rocket is difficult. The talent pool that SpaceX, Virgin Galactic, and Blue Origin are working with is extremely small and notoriously competitive. As these programs continue to build in credibility, it may be easier to find talent, but few engineers want to be tied to a failed launch.

The risk of failure

Usually, when you fail at something like a math test or a driver's exam, the ramifications aren't too big. But with space travel, a small problem can quickly turn into a deadly situation for those on board the rocket. Think back to the Challenger explosion in 1986. The success of previous missions (not to mention the administrative corner-cutting) led to a false sense of security when in reality they were still embarking on the insanely difficult feat of launching humans into space. The risk of failure is so great, many commercial manufacturers are cautious to put their weight behind an operation that could in all likelihood come crashing back down to Earth.

Rocket construction

Think back to when you were in school learning about Isaac Newton's Third Law of Motion: for every action, there is an equal and opposite reaction. It's a simple idea, but complex in reality. That law of motion forms the basis for rocket science: the combustion of rocket fuel down into the earth is one action, so the opposite reaction causes the rocket to launch upward into space. But the engineering that's needed for a launch to take place is the hard part.

As mentioned in a 2012 NPR article, there are millions of pieces in every rocket, and "therefore millions of opportunities to make errors — to make errors in calculations, to make errors in construction." The devastating Challenger mission failure is often attributed to faulty O-rings — it's a simple piece of equipment and can often be overlooked.

Even after hundreds of successful launches over the years, rocket construction is just as complex, and the process of shooting humans into space cannot be distilled to a law of motion when there is so much more involved to make that process happen.

Public perception

Throughout the '70s, Americans were enthralled by the idea of the space race and becoming the first country to set foot on the moon. But the public's passion died down after that initial landing. Today, the public perception of current space projects is making doing the actual rocket science and engineering difficult.


Objections against NASA's waste of taxpayer money on "futile" missions and the idea that space travel will only be for the mega-wealthy make any conversation around actual scientific discovery second to politics. Not to even mention the newly minted Space Force. Engineers and scientists have to navigate a hoard of political, financial, and PR battles to even get to do the work of getting people back into space.

The bottom line

Rocket science is thought of as one of the most difficult fields for a reason. Building a piece of technology capable of going into space and even housing people inside is a relatively new feat when considering the span of time. As the billionaire space race continues to unfold, scientists and engineers behind the scenes are creating feats of engineering on a regular basis that will shape the future of space travel. But, if you want to just get a taste of space life, without all the schooling, then a trip to the Johnson Space Center is for you.

------

Natasha Ramirez is a Utah-based tech writer.

Artificial intelligence is changing Houston — one industry at a time. Photo via Getty Images

3 ways artificial intelligence is changing Houston's future

Guest column

Artificial intelligence is the buzzword of the decade. From grocery shopping assistance to personal therapy apps, AI has sunk its teeth into every single industry. Houston is no exception to the AI boom. Enterprise-level companies and startups are already flocking to H-town to make their mark in AI and machine learning.

Since the world is generating more data every minute — 1,736 terabytes to be exact — Houston-based companies are already thinking ahead about how to make sense of all of that information in real-time. That's where AI comes in. By 2021, 80 percent of emerging technologies will have AI foundations — Houston is already ninth on the list of AI-ready cities in the world.

AI and machine learning can process large amounts of data quickly and use that data to inform decisions much like a human would. Here are three ways Houston-based companies are using these emerging technologies to revolutionize the city's future.

Health care

The health care industry is primed for AI's personalization capabilities. Each patient that doctors and nurses encounter has different symptoms, health backgrounds, and prescriptions they have to remember. Managing that amount of information can be dangerous if done incorrectly. With AI, diseases are diagnosed quicker, medications are administered more accurately, and nurses have help monitoring patients.

Decisio Health Inc., a Houston-based health tech startup has already made its mark in the healthcare industry with its AI software helping to tackle the COVID-19 pandemic. Their software, in collaboration with GE Healthcare Inc, allows health care providers to remotely monitor patients. By looking at data from ventilators, patient monitoring systems, health records, and other data sources, doctors can make better decisions about patients from a safe distance.

Climate change

Climate change isn't solved overnight. It's an issue that covers water salinity, deforestation, and even declining bee populations. With a problem as large as climate change, huge amounts of data are collected and need to be analyzed. AI can interpret all of that information, show possible future outcomes, track current weather patterns, and find solutions to environmental destruction.

One Houston-based company in the energy tech industry, Enovate Upstream, has created a new AI platform that will help digitize the oil and gas sector. Their AI-powered platform looks at data from digital drilling, digital completions, and digital production, to give oil companies real-time production forecasting. Their work will hopefully make their oil production more efficient and reduce their carbon emission output. Since oil drilling and fracking are a major cause for concern around climate change, their work will make a difference in slowing climate change and make their industry as a whole more climate-conscious.

Energy

Energy is an industry rich with data opportunities—and as Houston's energy sector grows, AI has become a core part of their work. Houston's large influence in the energy sector has primed it for AI integration from startups like Adapt2 Solutions Inc. By using AI and machine learning in their software, they hope to help energy companies make strategic predictions on how to serve energy to the public efficiently. Their work has become especially important in the wake of COVID-19 and the resulting changing energy needs.

Another Houston-based company using AI to influence the energy industry is the retail energy startup Evolve Energy. Their AI and machine learning system help customers find better prices on fluctuating renewable resource—helping them save money on electricity and reducing emissions. The positive feedback from the public on their AI model has shown how energy companies are using emerging technologies like AI in a positive way in their communities.

The bottom line

Houston is more primed than most cities to integrate AI and machine learning into every industry. While there are valid concerns as to how much we should lean on technology for necessary daily tasks, it's clear that AI isn't going anywhere. And it's clear that Houston is currently taking the right steps to continue its lead in this emerging AI market.

------

Natasha Ramirez is a Utah-based tech writer.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University team develops eco-friendly method to destroy 'forever chemicals' in water

clean water research

Rice University researchers have teamed up with South Korean scientists to develop the first eco-friendly technology that captures and destroys toxic “forever chemicals,” or PFAS, in water.

PFAS have been linked to immune system disruption, certain cancers, liver damage and reproductive disorders. They can be found in water, soil and air, as well as in products like Teflon pans, waterproof clothing and food packaging. They do not degrade easily and are difficult to remove.

Thus far, PFAS cleanup methods have relied on adsorption, in which molecules cling to materials like activated carbon or ion-exchange resins. But these methods tend to have limited capacity, low efficiency, slow performance and can create additional waste.

The Rice-led study, published in the journal Advanced Materials, centered on a layered double hydroxide (LDH) material made from copper and aluminum that could rapidly capture PFAS and be used to destroy the chemicals.

The study was led by Rice professor Youngkun Chung, a postdoctoral fellow under the mentorship of Michael S. Wong. It was conducted in collaboration with Seoktae Kang, professor at the Korea Advanced Institute of Science and Technology, and Keon-Ham Kim, professor at Pukyung National University, who first discovered the LDH material.

The team evaluated the LDH material in river water, tap water and wastewater. And, according to Rice, that material’s unique copper-aluminum layers and charge imbalances created an ideal binding environment to capture PFAS molecules.

“To my astonishment, this LDH compound captured PFAS more than 1,000 times better than other materials,” Chung, lead author of the study and now a fellow at Rice’s WaTER (Water Technologies, Entrepreneurship and Research) Institute and Sustainability Institute, said in a news release. “It also worked incredibly fast, removing large amounts of PFAS within minutes, about 100 times faster than commercial carbon filters.”

Next, Chung, along with Rice professors Pedro Alvarez and James Tour, worked to develop an eco-friendly, sustainable method of thermally decomposing the PFAS captured on the LDH material. They heated saturated material with calcium carbonate, which eliminated more than half of the trapped PFAS without releasing toxic by-products.

The team believes the study’s results could potentially have large-scale applications in industrial cleanups and municipal water treatments.

“We are excited by the potential of this one-of-a-kind LDH-based technology to transform how PFAS-contaminated water sources are treated in the near future,” Wong added in the news release. “It’s the result of an extraordinary international collaboration and the creativity of young researchers.”

Axiom Space announces new CEO amid strategic leadership change

new leader

Six months after promoting Tejpaul Bhatia from chief revenue officer to CEO, commercial space infrastructure and human spaceflight services provider Axiom Space has replaced him.

On Oct. 15, Houston-based Axiom announced Jonathan Cirtain has succeeded Bhatia as CEO. Bhatia joined Axiom in 2021. Cirtain remains the company’s president, a role he assumed in June, according to his LinkedIn profile.

In a news release, Axiom said Cirtain’s appointment as CEO is a “strategic leadership change” aimed at advancing the company’s development of space infrastructure.

Axiom hired Cirtain as president in June, according to his LinkedIn profile. The company didn’t publicly announce that move.

Kam Ghaffarian, co-founder and executive chairman of Axiom, said Cirtain’s “proven track record of leadership and commitment to excellence align perfectly with our mission of building era-defining space infrastructure that will drive exploration and fuel the global space economy.”

Aside from praising Cirtain, Ghaffarian expressed his “sincere gratitude” for Bhatia’s work at Axiom, including his leadership as CEO during “a significant transition period.”

Bhatia was promoted to CEO in April after helping Axiom gain more than $1 billion in contracts, Space News reported. He succeeded Ghaffarian as CEO. Axiom didn’t indicate whether Bhatia quit or was terminated.

Cirtain, an astrophysicist, was a senior executive at BWX Technologies, a supplier of nuclear components and fuel, for eight years before joining Axiom. Earlier, Cirtain spent nearly nine years in various roles at NASA’s Marshall Space Flight Center in Huntsville, Alabama. He previously co-founded a machine learning company specializing in Earth observation.

“Axiom Space is pioneering the commercialization of low-Earth orbit infrastructure while accelerating advancements in human spaceflight technologies,” Cirtain said. “I look forward to continuing our team’s important work of driving innovation to support expanded access to space and off-planet capabilities that will underpin the future of space exploration.”

Among other projects, Axiom is developing the world’s first commercial space station, creating next-generation spacesuits for astronauts and sending astronauts on low-Earth orbit missions.

Houston billionaire benefactors will donate almost entire fortune to charity

Giving Back

Houston billionaires Rich and Nancy Kinder plan to donate an astounding 95% of their multi-billion-dollar wealth to charities, they told ABC13's Melanie Lawson.

The news comes as the Kinder Foundation announced an $18.5 million expansion project for Emancipation Park in the heart of Third Ward. That historic park was founded by slaves in 1872.

The Kinders are one of the wealthiest couples in the nation, worth $11.4 billion, according to Forbes. You've certainly seen the Kinder name on buildings and facilities around the city of Houston.

The Kinders are also among the most generous, giving away hundreds of millions to Houston institutions and charities. Their plan is to give away almost all of their wealth, or more than $10 billion.

Rich Kinder helped build oil and gas pipeline giant Kinder Morgan, but he stepped down as CEO more than a decade ago for a what he calls a bigger cause.

"Well, I think we'd all like to leave the world a little better place than we found it," he said. "And we just felt early on that the right thing to do was to try to give most or all of that away. So that's what we plan to do during our lifetime and after our death."

They found kindred spirits as one of the first couples to sign The Giving Pledge, established by billionaires Bill and Melinda Gates and Warren Buffett.

---

Continue reading the full story, with video, on ABC13.com.